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1. Introduction

The Bayesian variable selection approach have been developed by a number of

authors, for example, Skene and Wakeeld (1990); Carlin (1992); Smith et al.

(1995). Chung and Dunson (2007) maintains that these approaches are simple

and efficient methods for computing posteriors in a mixture of prior distributions.

Related approaches with the Bayesian variable selection, have been discussed by

Muller et al. (2004). Dominici and Parmigiani (2001), and Carota and Parmi-

giani (2002) have also focused on the semi-parametric Bayesian variable selection

approach for count data, although in a different setting than considered here. In

the context of Bayesian variable selection, one can use covariates at the study

level, which could explain the differences among studies. Thompson (1994) ar-

gued that heterogeneity could be regarded as an asset rather than a problem. In

Bayesian variable selection, the trial characteristics are considered as covariates in

a regression analysis with the estimated treatment effect of the trial as the depen-

dent variable. Ideally, the covariates used in such an analysis should be specified

in advance to reduce the risk of post hoc conclusions prompted by inspecting the

available data. Otherwise, there is a danger of false-positive results. There are

two key ideas in this paper. The first idea is the method used to construct a class

of mixture of priors having support close to hyper-parameter of φ. The second

idea is the computational technique used to find the posterior distributions. It

is intended to extend the results of Liang et al. (2008) to the Bayesian variable

selection approach. However, prior distribution selection of model parameters is

an issue that causes motivation and a main necessity for this research. Using

improper priors in model selection topics is not acceptable, because these priors

cause unknown Bayesian factors and posterior probabilities. So an application of

proper priors in this field is suggested. Here, we pay attention to Bayesian model

selection in general linear models or in other words, Bayesian variable selection in

these models. In Section 2, we present our proposed model based on conditional

distributions. In section 3, we compute the posterior distributions. Since the pos-

terior distributions do not have closed forms, they are approximated by simulation

techniques. Gibbs sampling and Metropolis-Hastings algorithm are used to obtain

the estimates of the parameters in a Bayesian manner. At the end of section 4,

the efficiency of our proposed method is examined on three simulated data set.

Finally, in Section 5, an illustrative example is given.
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2. The Model

The random component of generalized linear models consists of a response variable

Y with independent observations Y = (Y1, · · · , Yn)
′
, from a distribution in the

natural exponential family. This family has probability density function or mass

function of the form

f(yi;µi) = a(µi)b(yi)exp(yiQ(µi)), (2.1)

Now, suppose for y, (y = 1, 2, · · · , p), that ββγ = (βγ0, · · · , βγq) is the vector of

regression parameters corresponding to the of q covariates x′i = (1, xi1, · · · , xiq).
Using the link function g(µi), the assumed structure for the link function is g(µi) =

x′iββγ , i = 1, · · · , n. Then, for a response variable Y, and a collection of predictive

variables, X = (X1, · · · , Xq)
′
, we would like to choose the best relating model

among all the proposed generalized linear models. So, mean of response variable

is vector µ = (µ1, · · · , µn)
′
, and variance-covariance matrix is Σ. We assume that

errors are independent and have multivariate distribution with mean vector of

zero and variance-covariance matrix of Σ. Bayesian approach in model selection

and model uncertainty consists of determination of prior distribution of unknown

parameters, θγ = (βγ ,Σ) ∈ θγ for correction of prior probabilities of models M

and then finding posterior probabilities of each candidate models as following;

P (Mγ |y) =
P (M)P (YMγ)

Σ(P (Mγ)P (YM)

=
P (Mγ)

∫
P (Y |θ,Mγ)P (θ|Mγ)dθ

Σ
∫
P (Mγ)P (Y |θ,Mγ)P (θ|Mγ)dθ

(2.2)

Determining the prior distribution of unknown parameters, in the model selection

of general linear models(GLM) is based on using prior distributions like both

symmetric and non-symmetric priors. We use both symmetric and non-symmetric

priors families as (SN-priors), for selection of prior distribution (βγ ,Σ), in general

linear model, g(y) = Xβ + δ, as follows; E(δ) = 0, V ar(δ) = Σ

P (Σ) ∝ Σ−1, (2.3)

and

β|Σ ∼ N(η, π∗) (2.4)

where π∗ =
∏p
i (X

′

iXi). One Bayesian approach for this problem is to use a prior

distribution for ββγ . Since each covariate cannot be expected to exert much leverage
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on the response, one may choose µµ in the vicinity of zero and σ a small number,

at most to reflect the prior belief on ββγ . Therefore, this prior for the sake of

simplicity, being intelligible and computational efficiency has been adaptive in

SN-prior, extensively. One of the benefits of using priors is that their users are

only obliged to specify parameter π and it is clear that the relevant inferences are

also impressed by that selection. Many papers are presented in how should be

behaved with this parameter and until recently, using constant values for π has

been considered. In recent years, George and Foster (2000) noticed at the policy of

empirical Bayes for specifying the parameter π but for the contradictions in using

constant values and also, for the unfavorable points of view of many statisticians

toward empirical Bayes, fully Bayes is a common substitution. In this approach,

a suitable prior for parameter π is used so, our inferences will be more robust.

In this research, by the study of fully Bayes approach, we introduce and evaluate

a mixture of symmetric and non-symmetric priors. Noting that the computation

of marginal likelihoods using a mixture of symmetric and non-symmetric priors

(SN-priors) only includes a one-dimensional integral, In addition to guaranteeing

robustness in regard to misspecification of parameter π in mixture of symmetric

and non-symmetric priors (SN-priors), this point of view keeps some interesting

computational benefits of primary SN-priors. Variable selection in General linear

models is a multiple hypothesis testing problems which ends up in many non-

nested comparisons. So, for the possibilities of comparison among models, using

a base model is being noticed. The model posterior probability Mγ in 2.2 using

Bayes factors can be rewritten as follows;

P (Mγ |y) =
P (Mγ)BF (Mγ : Mb)

ΣγP (Mγ)BF (Mγ : Mb)
(2.5)

So that the Bayes factor BF (Mγ : Mb) is obtained from the proportion of marginal

likelihood of model, Mγ , to the base model Mb. In the approach which uses zero

model as base model for computation of Bayes factors and posterior probabilities

of models, each model, Mγ , is compared to zero model, Mb, through hypotheses

H0 : βγ = 0 and H1 : βγ 6= 0. Besides these assumptions, we assume that columns

of design matrix have been centralized and then |X ′X| = 0. This status is based

on discussions related to the transformation stability of location and scale, and

orthogonal parameterizations which results in using priors;

P (Σγ |Mγ) ∝ Σ−1
γ , (βγ |Σγ ,Mγ) ∼ N(µγ ,Φ

∗
γ) (2.6)

as a SN-prior of parameters, θγ = (βγ ,Σγ) ∈ θγ under model Mγ . Now, Bayesian

inference is based on the analysis of the posterior distribution. In general, this
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posterior will not have a known closed form; rather, it will have a complicated

high dimensional density only known up to the normalizing constant, which makes

direct inferences almost impossible. Markov Chain Monte Carlo (MCMC) methods

are techniques that have been developed to resolve this kind of problem. Thus, we

employ the MCMC method to compute the posterior distribution, the posterior

expectation of some function of βγ and the marginal likelihood. An important

benefit of SN-priors is their computational efficiency, which ends up in a closed

form for marginal likelihoods and then provides accurate interpretation for Bayes

factors. We have to compute m(y|Mγ) as the marginal likelihood and π(βγ ,Σγ |y)

as the joint posteriors distribution of βγ and Σγ . Estimation of the marginal

likelihood and the posterior distribution is quite simple. First, we estimate the

marginal distribution. The marginal distribution can be computed from the n

realizations of the Gibbs sequence. For j = 1, . . . ,K, if we draw a large number of

values (β1γ , · · · , βnγ) and (Σ1γ · · · ,Σnγ) from the density 2.4, then, from 2.6 we

shall have:

m(y|Mγ) = Eπ(β,Σ)(L(β1γ , · · · , βnγ ,Σ1γ , · · · ,Σnγ)|y)

∝ 1

n
Σni=1L(βi.1γ , · · · , βi.nγ ,Σi.1γ , · · · ,Σi.nγ |y) (2.7)

The estimator 2.7 is unstable when the priors are diffuse or the likelihood is

much more concentrated than the priors. In such cases the simulation will be

inefficient since most of the simulated values will have low likelihood values and

therefore the estimator will be dominated by few large values. Moreover, the

variance of the estimator 2.7 will be large and convergence of the estimator to

its true value will be very slow. An alternative way to approximate the marginal

distribution is the Laplace approximation. This method has been used by Kadane

and Lazar (2004)

log(m(y|Mγ)) ≈ .5d ∗ log(2) + .5log|H∗|+ log(L(β∗,Σ∗|y)π(β∗,Σ∗)) (2.8)

where β∗γ and Σ∗γ is the vector of posterior mode estimate of βγ and Σγ , and ∗ is

the inverse of the Hessian matrix ∂2h(βγ ,Σγ)/∂βγ∂β
′
γ of

h(βγ ,Σγ) = log(L(β∗γ ,Σ
∗
γ |y)π(β∗γ ,Σ

∗
γ))

evaluated at β∗ and Σ∗. Usually, the Bayes factor is used for models comparison. If

we apply the above approximation by expanding the numerator and denominator

of the Bayes factor, we would get an approximation of the Bayes factor. For the
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models Mγ and M(γ′), one has

BF(γγ′)[Mγ ,M(γ
′)] ≈

L(β∗γ ,Σ
∗
γ |y)

L(β∗γ′ ,Σ∗γ′ |y)

∣∣∣∣∣ H(β∗γ ,Σ
∗
γ)

H(β∗γ′ ,Σ∗γ′)

∣∣∣∣∣
0.5

1

2π

(dγ′−dγ)/2

(2.9)

or

log(BF(γγ′)[Mγ ,M(γ
′)] ≈ log(λn) + S((β∗γ ,Σ

∗
γ), (β∗(γ′),Σ

∗
(γ′))) (2.10)

Where λn is the standard likelihood ratio for the comparison of models Mγ and

Mγ′ and S((β∗γ ,Σ
∗
γ), (β∗(γ′),Σ

∗
(γ′))), denote the remainder term. When Mγ is a

sub-modelMγ′ , the remainder term S((β∗γ ,Σ
∗
γ), (β∗(γ′),Σ

∗
(γ′))), is o(1). To compare

various models by the Bayes factor, we use the Bayes factor approximation 2.10.

Now, 2.10 along with its interpretations provided by Kass and Raftery (1995),

is used to choose the best model for an specific example , i.e. in Tehran’s Air

Pollution as capital of Iran. Constant Values for parameter π in SN-priors is like

a dimensionality penalty parameter. So, its selection is crucial and important.

Until recently, it was emphasized to use a constant value for parameter π, and

some selection methods were suggested, which we refer to some of them. Berger

and Perichi (2001) suggested some selections for priors so that the amount of

information about the parameter equals to the average amount of information

contained in one observation. In the discussion of Normal-Linear models, unit

information prior corresponds to the selection of π = n. George and Foster

(2000) indicated that Bayesian model selection using this selection corresponds

to the selection of the BIC criterion. George and Foster (2000) calibrated some

priors based on RIC criterion for model selection and suggested π = p2 based on

a minimax point of view.

Carota and Parmigiani (2002) had an extensive study on different and possible

selections of parameter π so that these selections depend on the sample size n and

the dimension of dependent model, p. They showed the results of their studies

with suggest π = max(n, p2). We will refer their benchmark prior which relates

RIC and BIC criterion as BRIC.

2.1 Paradoxes of Constant SN-priors

It can be concluded that, Bayes factors for model selection using constant selec-

tions for parameter π may have some unfavorable features. For inference under a

given model even when we consider a very large amount for π, again the posterior

probability of this model is logical and justifiable but for constant n, when pa-

rameter π goes to infinity,π −→∞, Bayes factor 2.8, for comparison between two
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models, and will go to zero. So, high dispersal of prior distribution which is done

with non-informative choice of π, results in a way that Bayes factor always behaves

for confirmation of zero model, regardless of available information in data. This

issue is not always true, actually, it is a paradox. This contradiction is Bartlett

Paradox.

3. Empirical Bayes SN-priors

The idea behind local empirical Bayes strategy is that under each of these models,

we estimate parameter π separately. Using 2.5, an empirical Bayes estimation of

this parameter is a maximum likelihood estimation (marginal) which is conditional

on not being negative. The marginal distribution can be computed from the n re-

alization of the Gibbs sequence. So, equivalently, we can present empirical Bayes

estimator of π by πγ(EB) . It will be the local empirical Bayes estimation of pa-

rameter Π so that πEBγ = Max(Σ
∫
P (Mγ)P (Y |θ,Mγ)P (θ|Mγ)dθ) is an ordinary

statistic of Distribution function for testing .

3.1 Global Empirical Bayes:

Global empirical Bayes point of view for assigning parameter π sets an estimation

of a common value among each models in which this common value will be obtained

from maximizing weighted mean of marginal likelihoods and using model priors

as a weighted mean. So, global empirical Bayes estimation of parameter π is;

πγ(GEB) = Mean(Max(Σ
∫
P (Mγ)P (Y |θ,Mγ)P (θ|Mγ)dθ)). The last expression

is not flexible and does not provide a closed form for πγ(GEB) however numerical

methods can be useful. We can expand an EM algorithm for computation of the

above expression. πγ(GEB) is recalled as MLE type II.

It can be shown that for constant n and p, p < n, under each of two local and

global empirical Bayes estimators, whenever the probability goes to 1, Bayes factor

2.8 for comparison of M and Mb goes to infinity and therefore, the information

paradox which results in using constant value for parameter g in SN-priors will

be resolved. In addition to using empirical Bayes estimation for obtaining g, a

common substitution is a closed-form marginal likelihood under a proper prior on

this parameter.
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3.2 A Mixture of SN-Prior

Suppose P (g) (It is possible to be dependent on n) represent prior distribution of

hyper parameter g in Zellner SN-priors. So, in the approach based on zero model,

marginal likelihood of data, , will be proportionate to the following Bayes factor:

BF (Mγ : MN ) =

∫ ∞
0

(1 + g)((n+p)/2)(1 + g(1−R2
γ))(−(n−1)/2)P (g)dg

According to relation 2.9, a similar expression for the approach based on complete

model is available. Regarding relation 2.7 and under the selection of a model, the

posterior mean of is as follows;

E(βγ |Y,Mγ) = E(E(βγ |Y,Mγ , g)) = E(
g

1 + g
|Y,Mγ)βOLSγ

So that βOLSγ is ordinary least squares estimator of β under Mγ model. Under con-

stant G-priors, posterior mean of βγ in a selected model, Mγ , is a linear shrinkage

estimator with constant shrinkage factor of g
1+g whereas a mixture of SN-priors

provides the possibility of dependency of shrinkage estimator on data, adaptively.

We investigate two cases of SN-priors mixtures here; Zellner and Siow Cauchy

multivariate prior and hyper SN-prior.

3.3 Zellner- Siow prior

Zellner and Siow (1980) in a hypothesis testing related to the mean of one-variable

Normal Distribution, rejected Normal priors and suggested Cauchy priors. After

that Kass and Raftery (1995) paid attention to multivariate Cauchy priors for

regression coefficients which in fact, it was a generalization of Jeffryes work to the

multivariate normal mean problem. For comparison between two models, if one

of them is considered as nested into the other one, then Zellner and Siow point of

view for assigning the priors of unknown parameters is a flat prior on common

parameters of two models and also a multivariate Cauchy prior on remaining

parameters. For example, in the approach based on zero model, Zellner and Siow

prior is as follows;

P (α, φ|Mγ) ∝ 1

φ

and

P (βγ |φ,Mγ) ∝ Γ(pγ/2)

πpγ/2

∣∣∣∣∣X
′

γXγ

n/φ

∣∣∣∣∣
1/2(

1 + β
′

γ

X
′

γXγ

n/φ
βγ

)− pγ2
This does not offer a closed form for marginal likelihoods but Zellner and Siow

got some approximation for marginal likelihoods so that whatever the dimension
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of model (pγ) increases, the accuracy of these approximations decreases. But one

of the significant features of multivariate Cauchy distribution is the possibility of

presenting it by a mixture of Normal random variables densities. Then Zellner

and Siow priors can be represented via this method and with setting an Inverse

Gamma prior distribution, IG(.5, n/2) on parameter g. This means;

P (βγ |φ,Mγ) ∝
∫
N(βγ |0,

g

φ
(X

′

γXγ)−1)P (g)dg

In which;

P (g) =
(n/2)0.5

Γ(0.5)
g−1.5exp(−n/(2g))

The benefit of this representation is; by using P (g) in relation 2.10 for computation

of Bayes factor, we only face a one-dimensional integral on g which is independent

of model dimension and then the accuracy of approximations will not differ with

increase in the model dimension.

3.4 Hyper SN- priors

As a substitution for Zellner-Siow priors in Bayesian variable selection problems,

we introduce another family of priors named Hyper G-prior for parameter g as

follows;

P (g) =
a− 2

2
(1 + g)−a/2 (3.11)

This prior is a special case of Inverse Beta prior Zellner and Siow (1980) which

has the following density function;

P (g) =
Γ(b+ c)

Γ(b)Γ(c)
gb−1(1 + g)−(b+c), g > 0

With b = 1 and c = a
2 − 1 , prior 3.11 is obtained. Hyper G-prior for a > 2

is a proper prior but for a < 2, it is an improper one. Also, a = 2 corresponds

to Jeffreys and reference priors. Using the values of a ≤ 2 for Bayesian factors

causes contradictions, so we ignore this case. In this field, each selection in range

of 2 < a ≤ 4 is logical. So, with presence of shrinkage factor, g
1+g , in marginal

posterior distribution of βγ , mostly the prior corresponding to this factor is paid

attention. If we consider the prior in relation 3.11 for g, then this shrinkage

factor has Beta distribution with mean, 2
a . The benefit of Hyper G-prior is; for

each model Mγ , the posterior density of parameter g is available as closed form.
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According to relation 2.5, we have;

P (g|Y,Mγ) ∝ P (Y |g,Mγ)P (g)

=
Pγ + a− 2

F ((n− 1)/2, 1; (pγ + a)/2;R2
γ)
∗ (1 + g)(n−1−pγ)/2

(1 + g(1−R2
γ))(n−1)/2

In this relation F (a, b; c; d) is an indicator of Gaussian Hyper Geometric function

(See the appendix). Also with using this function many necessary quantities can

be computed. As an example, by using Hyper SN-priors and integral form of

Gaussian Hyper Geometric function, the Bayes factor based on zero model and

according to relation 3.11 is as follows;

BF [Mγ : MN ] =
a− 2

2

∫ ∞
0

(1 + g)(n−1−pγ−a)/2(1 + g(1−R2
γ))−(n−1)/2dg

=
a− 2

pγ + a− 2
∗ F ((n− 1)/2, 1; (pγ + a)/2;R2

γ)

In addition, expected value of shrinkage factor, g
1+g , which is used for computation

of posterior mean of βγ , under each of M models is as follows;

E(
g

1 + g
|Mγ , Y ) =

2

pγ + a

F ((n− 1)/2, 2; (pγ + a)/2 + 1;R2
γ)

F ((n− 1)/2, 1; (pγ + a)/2;R2
γ)

4. Efficiency Evaluation

In this section for efficiency evaluation of a small sample in the discussed ap-

proaches, in the form of a simulation study and investigation of a real sample,

we compare Zellner-Siow Cauchy priors and Hyper G-prior with other important

points of view. Description of comparing approaches –under comparison- is men-

tioned in Table (1).

4.1 Comparison Via Simulation

In this simulation we produce response variable data, Y , from a Linear-Normal

model,Y = 1nα+Xβ+δ , so that errors, δ , follow a multivariate normal distribu-

tion with mean vector of zero and variance-covariance matrix, In
φ . In the process

of producing data, we select α = 2 and φ = 1 , also we suppose sample size, n,

equals to 100. Following, Cui and George (2008) and for speeding up in computa-

tion, we focus on a special case of orthogonal design matrix (X = In) and consider

the number of predictive variables as p = 7. For a model with pγ variables the

regression multiples, βγ , are produced from a multivariate normal distribution,
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Table 1: Some explanation related to approaches compared in simulation Com-

parison Via Simulation.

AIC Akaike Information Criterion

HG-3 Hyper SG -prior with a=3

EBG Global Empirical Bayes Estimation of Parameter g in G-prior

ZS-F Base Model-Complete Model, Multivariate Cauchy Prior forβ

and Flat Prior φ and βγ

ZS-N Base Model-Zero Model, Multivariate Cauchy Prior forβ and

Flat Prior φ and βγ

BRIC Constant G-prior of George and Foster (2000) with g = max(n, p2)

EBL Local Empirical Bayes Estimation of Parameter g in G-prior

BIC Bayesian Information Criterion

Npγ (0, g/φIpγ ), and also, we consider that remaining elements, β, equal to zero;

βpγ+1, · · · , βp = 0. In this simulation as George and Foster (2000), we investigate

two values for g = 5, 25, and consider squared error loss criterion for comparison

of different methods efficiency for each method of m as follows;

MSE(m) = (Xβ −Xβ̂(m))
′
(Xβ −Xβ̂(m))

In this quantity β̂(m) is an estimator of β under method m. Under each of these

methods and for comparison among different models, we considered highest poste-

rior probability index of model. In this situation, β estimator is its posterior mean

under the selected model. For BIC the marginal likelihood logarithm of model Mγ

is defined as follows;

log(P (Y |Mγ)) = −1

2
(nlog(σ̂2

γ) + pγ log(n)). (4.12)

In which σ̂2
γ =

RSSγ
n is maximum likelihood estimator of σ2 under model Mγ .

For AIC this quantity is obtained with replacement of 2pγ with log(n) in 4.12.

These marginal likelihoods are applied for the computations related to posterior

probability of models. Under BIC and AIC, βγ estimator (posterior mean) will

be ordinary least squares estimator of (β̂olsγ ). Also in this section, we consider the

uniform prior probabilities for models which mean P (Mγ) = 2−p. For each value

of g and pγ = 0, 1, · · · , 7, we produce the response variables, Y , as mentioned, and

for getting posterior mean of βγ under each eight methods, we compute MSE(m).

For each three-compound of g, pγ and method m, we repeat this data production

and computation of MSE(m), for 500 times, and then get mean of MSE(m) for
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Figure 1: Graphs of mean of MSE for each method simulation us-

ing AIC(∗),BIC(*),BIRC(SN-prior)(/) EB-local(.),EB-global(.),hyper-π(◦), ZS-

full(×),and ZS-null,π=5,a=3

each combination and mentioned repetitions. In figure (1), mean of MSE against

the number of predictive variables of accepted model has been drawn. For the

results of MSE, for local empirical Bayes (LEB), global empirical Bayes (GEB),

Zellner-Siow prior based on zero model (ZS-N) and Hyper SN-prior (HG-3) are

approximately the same and for models with different sizes, these methods are

preferable to the other ones. In this figure, for simplicity only Hyper SN-prior

with a = 3 is drawn but we cannot judge about other hyper SN-priors based on

this case. When a complete model is fit to data, the results show that a hyper-SN

prior with a = 3 has a better function than other approaches of fully Bayes.

The difference between fully Bayes methods and other ones when a zero model

is fit to data is more obvious. When zero model is accepted, the global empirical

Bayes (EBG) has the best function and the reason is that in EBG, the g estimator

will get its power from all models. In this situation, it tends more towards estima-

tor π = 0. We observe that a mixture of fully Bayes SN-priors except in zero model

acts like EBG. While Cui and George (2008), with a similar simulation, found
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Figure 2: Graphs of mean of MSE for each method simulation us-

ing AIC(),BIC(*),BIRC(SN-prior)(/) EB-local(.),EB-global(.),hyper-π(◦), ZS-

full(×),and ZS-null,π=5,a=25
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that EBG has better function than fully Bayes standpoints. In this simulation,

we have used a uniform prior on model space, but Cui and George used Bernoulli

prior probabilities for prior inclusion probability of variables. So, the selection of

model prior probabilities can affect the results.

5. Surveying a Real Example

Some researchers who work on air quality control testify that Carbon Monoxide

(CO) pollutant has the most portion in Tehran’s air pollution (Capital of Iran).

In recent years by imposing some policies such as using gas-fuel cars, traffic con-

trol plans, technical examination of cars, the substitution of old cars with new

ones, etc., there has been an effort to reduce the density of this pollutant but,

this pollutant again has a significant portion in air pollution. In the year 2008,

to survey Carbon Monoxide density in Tehran’s air and 6 air pollution evaluation

stations(Fatemi, Bazzar, Aqdasyeh, Geophysic, Tehransar and Shahre Rey), the

density of this pollutant in different hours of days and nights was measured. Also,

besides measuring CO density, other variables such as wind speed and vertical

profile of temperature were measured too. Here, we pay attention to spring ob-

servations and compute the mean of CO density and weather variables in each

estimation and in 8 different hours(00:30, 3:30, 6:30, 9:30, 12:30, 15:30, 18:30,

21:30), and use the above data for evaluating the influence of G-priors on poste-

rior probabilities and estimation of multiples. Regarding the number of stations

and surveyed hours, five dummy variables for different stations and 7 dummy vari-

ables for different hours in the regression model are used. The aim is to survey

factors of the region, hour, wind speed, and vertical profile of temperature index in

Carbon Monoxide density. Table 2 shows the influence of a mixture of SN-priors

and other approaches on marginal posterior inclusion probabilities of predictive

variables of Carbon Monoxide density.

These marginal probabilities for the i-th variable are defined as follow;

P (βi 6= 0|Y ) =
∑
γi

P (Mγ |Y )

Posterior inclusion probabilities are used for the median probability model, which

is mostly similar to the model with the highest posterior probability. The me-

dian probability model includes predictive variables that have posterior inclusion

probability greater than 0.5. It means P (βi 6= 0|Y ) > 0.5. The constant bench-

mark SN-prior of Carota and Parmigiani (2002) in this example corresponds to

RICπ = 256. A mixture of ZS-N and HG3 SN- priors ends up with marginal



Bayesian Variable Selection using The Laplace Approximation 185

Table 2: : Posterior inclusion probabilities for each variable under different priors

in Carbon Monoxide data.
Var BRIC ZS-N ZS-F HG3 EBL EBG AIC BIC

A1 0.57 1.00 1.00 1.00 1.00 1.00 1.00 1.00

A2 0.45 1.00 1.00 1.00 1.00 1.00 1.00 1.00

A3 0.16 0.99 1.00 0.99 0.99 1.00 1.00 1.00

A4 0.06 0.99 0.99 0.99 0.99 0.99 1.00 1.00

A5 0.09 0.97 0.99 0.97 0.98 0.98 0.99 0.99

H1 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

H2 0.66 1.00 1.00 1.00 1.00 1.00 1.00 1.00

H3 0.68 0.99 0.99 0.99 0.99 0.99 0.99 0.99

H4 0.69 0.35 0.52 0.35 0.34 0.34 0.68 0.58

H5 0.66 0.95 0.97 0.95 0.95 0.96 0.99 0.99

H6 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

H7 0.66 1.00 1.00 1.00 1.00 1.00 1.00 1.00

WS 0.36 0.06 0.61 0.06 0.06 0.06 0.88 0.76

ZI 0.81 0.71 0.58 0.70 0.71 0.70 0.60 0.56

posterior inclusion probabilities similar to data-dependent approaches of global

and local empirical Bayes. So it causes the same median probability model. Table

1 shows the posterior mean and standard deviation of multiples under a mixture

of SN- priors. In this table, it is clear from a comparison of 6 stations that the

most CO density in the spring season is related to Fatemi station, also in different

hours, the most CO density belongs to the hour 18:30. Although, under a mixture

of SN-priors, the relation between CO density and wind speed (WS) is inverse,

but this factor in the spring season does not have a significant effect on CO den-

sity. CO density also has an inverse relation with a vertical profile of temperature

index (ZI) and as this index increases, CO density decreases, but unlike the wind

speed, the influence of this index is significant. In the above table, dummy vari-

ables A1, · · · , A5 present the station effects and dummy variables H1, · · · , H7 are

related to different hours effects.

5.1 Conclusions

In this research, for the Bayesian variable selection problem and prior distribution

determination of unknown parameters, we review SN-priors. It is specified that

using constant values for parameter has some inconsistencies. As a result, we
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introduce empirical Bayes SN-prior and a mixture of SN-priors as substitutions

for constant SN-priors. In the simulated example, it was specified that a mixture

of SN- prior behaves better than, or at least, as good as other supposed points

of view. The investigation of Tehran’s air pollution data also indicates that each

three compounds of SN-priors has the same results and using each of them does

not change the results. Under zero model, although the global empirical Bayes

approach has better function than other approaches, it is necessary to mention that

whenever the number of models is high, the estimation of parameter g faces many

challenges and in this situation a mixture of SN-priors such as Zellner-Siow Cauchy

prior and hyper SN-priors are very good substitutions, in adaption and robustness,

rather than misspecification of parameter ,and accelerate the computations related

to marginal likelihoods. This feature is necessary for the investigation of model

spaces with high dimensions. The prior distribution on model space is a vital case

in discussions related to Bayesian model selection and needs special attention. In

many studies in Bayesian variable selection fields, Bernoulli priors are used for

prior inclusion probabilities of variables. Corresponds to uniform prior on model

space that we use this prior for the probabilities of model priors. Mutually, we

can hold a hierarchical point of view towards the model space, and with setting

a prior distribution, apply the fully or empirical Bayes for specifying the model

priors.

Appendix

Gaussian Hypergeometric Function Suppose for r > 0 ;

(α)r =
Γ(α+ r)

Γ(α)
= α(α+ 1) · · · (α+ r − 1)

Then the hypergeometric function, is defined as follows;

F (α1, · · · , αm, β1, · · · , βn;Z) =

∞∑
r=0

(α1)r, · · · , (αm)r
(β1)r, · · · , (βn)r

zr

r!

If we put m = 2, n = 1 in this definition, then the Gaussian Hyper Geometric

function will be obtained. The integral presentation of Gaussian Hyper Geometric

function F1(a, b; c; z) is as follows;

F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt

This relation is obtained easily through definition. The above integral for real

value of |z| < 1 and the condition c > b > 0, is convergence and for values of
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z = 1 or z = −1, only under the conditions c > b+ a and b > 0 is convergence. In

different statistical software package such as BAS package and under R software,

some special instructions for computation of values of Gaussian Hyper Geometric

values are defined.

Note: For accessing to real sample data and the program written under R software

for the simulation example, please refer to the authors.
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