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Abstract: This paper considers an extension of the linear mixed model, called

semiparametric mixed-effects model, for longitudinal data, when multicollinearity

is present. To overcome this problem, a new mixed ridge estimator is proposed,

while the nonparametric function in the semiparametric model is approximated by

the kernel method. The proposed approach integrates the ridge method into the

semiparametric mixed-effects modeling framework to account for both the corre-

lation induced by repeatedly measuring an outcome on each individual over time,

as well as the potentially high degree of correlation among possible predictor vari-

ables. The asymptotic normality of the exhibited estimator is established. To

improve efficiency, the estimation of the covariance function is accomplished us-

ing an iterative algorithm. Performance of the proposed estimator is compared

through a simulation study and analysis of the CD4 data.
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1. Introduction

Longitudinal data frequently arise in biological and economic applications. A

major difficulty in the analysis of longitudinal data is that the data are subject

to within subject correlation among repeated measurements over time. In re-

cent years, various traditional methods for longitudinal data have been developed.

However, mixed-effect models and semiparametric models are popularly applied.

In this paper, we consider the following semiparametric mixed-effects model

Yiptijq “ XJi ptijqβ ` gptijq ` Z
J
i ptijqbi ` εiptijq, (1.1)

where Yiptijq is the response for the ith subject at time point tij , β “ pβ1, . . . , βpq
J

is a p ˆ 1 vector of regression coefficients associated with the covariates Xiptijq;

gptijq is an unknown twice differentiable smooth function of time; the bi are i.i.d.,

unobservable qˆ 1 vectors of the random effects associated with covariates Ziptijq

with mean zero and covariance matrix Di; and the εiptijq, independent of bi,

is random error with E
 

εiptijq
(

“ 0. Without loss of generality, we assume

every tij is scaled into the interval r0, 1s. Similar to Fan and et al. (2007),

we assume V ar
 

εiptijq
(

“ σ2ptijq, which is a nonparametric smooth function,

but the correlation function between εiptijq and εiptikq has a parametric form,

corr
 

εiptijq, εiptikq
(

“ ρptij , tik, θq, where ρptij , tik, θq is a positive definite func-

tion of tij and tik, and θ is an unknown parameter vector. We assume both the

random effects and the errors are normally distributed and we have a random

sample of n subjects with the ith subject having ni observations over time and

total observation of N “
řn
i“1 ni.

In the mixed-effects model, random component takes care the correlation among

observations from the same subject,
“

see Fitzmaurice and et al. (2004) and Laird

and Ware (1982)
‰

. Since the parametric assumption in this model is not always

adequate, it is of interest to model the time effect nonparametrically while account-

ing for the correlation within the same subject. In such cases, the semiparametric

models are widely used in longitudinal studies. Related works include Fan and Li

(2004), Hu and et al. (2004) and Lin and Ying (2001). Model (1.1) is a natural

extension of linear mixed models and semiparametric models called semiparamet-

ric mixed-effect model that uses parametric fixed effects to present the covariate

effects and an arbitrary smooth function to model the time effect to account for

the within-subject correlation using random effects. The parametric component

provides a simple summary of covariates effects, which are of main scientific inter-

est, while the baseline function is included for flexibility. With both parametric

and nonparametric components, the proposed model is more flexible than the tra-
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ditional linear model. Zeger and Diggle (1994) used a semiparametric random

intercept model to analyze the CD4 cell numbers in HIV seroconverters, where

the nonparametric function is estimated by backfitting method. Our work is an

extension of their model. Indeed, we consider a more general class of mixed-effects

models with a kernel estimator of nonparametric function.

In addition to proposing a more flexible model (1.1), we consider the problem

of multicollinearity of predictor variables and estimation in the proposed model.

Ridge regression (RR), also known as Tikhonov regularization
“

see Tikhonov

(1943)
‰

, is a well-known penalized regression approach to handling multiple col-

inear predictor variables that involves adding a regularization term to the least-

squares equation in order to derive parameter estimates in the context of an ill-

conditioned or singular design matrix
“

see Hoerl and Kennard (1970a, b)
‰

. The re-

sulting shrinkage estimates, while biased, offer improved prediction accuracy, that

is, reduced prediction variance, and thus may be preferable in settings with a large

number of highly correlated independent variables, in which unique least-squares

solutions are not tenable. Recent applications of RR to longitudinal data include,

for example, Zhang and Horvath (2006), Malo and et al. (2008), and Eliot and

et al. (2011). In the present paper, we extend RR to the correlated response

setting in which a single outcome of interest is measured repeatedly over time at

potentially unevenly spaced time intervals. In the case of uncorrelated or mini-

mally correlated predictor variables, mixed-effects models with a person-specific

random intercept and slopes terms can be applied to account for the within-person

correlation in making inferences about the association. Here we integrate RR and

the mixed-effects modeling frameworks in order to account both for the correlation

induced by repeatedly measuring the outcome on each individual over time, as well

the potentially high degree of correlation among potential predictor variables.

We begin in Section 2 by providing a brief background on kernel estimation of

nonparametric function while proposed a new estimator, which we term the mixed

ridge (MR) estimator, for longitudinal data. Further, its asymptotic normality is

provided. In Section 3, an iterative algorithm is provided to calculate the estima-

tor. A simulation study to evaluate the performance and application to real data

are then provided in Sections 4. We conclude your paper in section 5.
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2. Estimation procedure

Denote Yi “
`

Yipti1q, . . . , Yiptini
q
˘J

; Xi, Zi, εi and ti similarly. The model (1.1)

can be presented as

Yi “ XJi β ` gptiq ` Z
J
i bi ` εi,

where gptiq “
`

gpti1q, . . . , gptini
q
˘J

. Let Vi “ ZiDiZ
J
i `Σi be the niˆni covariance

matrix of Yi and Σi “ AiRipθqAi be the ni ˆ ni working covariance matrix of εi,

where Ai “ diagpσpti1q, . . . , σptini
qq and Ripθq is the correlation matrix of εi with

pj, kq element equaling ρptij , tik, θq. Under normality assumption of error term and

random effects,

Yi „ N
`

Xiβ ` gptiq, Vi
˘

. (2.2)

Let µY ptijq “ EtYiptq|t “ tiju; µXptijq defined equivalently. It is evident that

µY ptijq “ µJXptijqβ ` gptijq. This together with equation (2.2) yields

Yi ´ µY ptiq „ N
`

rXi ´ µXptiqs
Jβ, Vi

˘

.

Further, denoting Y “ pY J1 , . . . , Y
J
n q

J, andX, ε similarly and Z “ diagpZJ1 , . . . ,

ZJn q, we have matrix notation of model (1.1) as

Y “ XJβ ` gptq ` ZJb` ε,

where gptq “
`

gpt1q
J, . . . , gptnq

J
˘

and b “ pbJ1 , . . . , b
J
n q
J is pn ˆ qq ˆ 1 vector of

random effects with mean zero and covariance matrix D “ diagpD1, . . . , Dnq. Let

V “ ZDZJ ` Σ be the N ˆ N block diagonal covariance matrix of Y and Σ be

the N ˆN block diagonal covariance matrix of ε.

Further, define qYi “ Yi ´ µY ptiq, µY ptiq “
`

µY pti1q, . . . , µY ptini
q
˘J

; qXi and

µXptiq similarly. Finally, for matrix notation, we have qY “ pqY J1 , . . . ,
qY Jn q

J and
qX “ p qXJ1 , . . . ,

qXJn q
J.

A weighted least squares (WLS) criterion for β is

lpβq “
n
ÿ

i“1

pqYi ´ qXJi βq
JV ´1

i pqYi ´ qXJi βq.

the term lpβq cannot be directly used in statistical inference because it contains

unknown functions µY p.q, µXp.q. We employ the kernel smoother to estimate

them, and the estimators are respectively defined as

pµXptq “
n
ÿ

i“1

ni
ÿ

j“1

ωijXiptijq, pµY ptq “
n
ÿ

i“1

ni
ÿ

j“1

ωijYiptijq,
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where ωij “ Khptij ´ tq{
řn
k“1

řnk

l“1Khptkl´ tq, h is a bandwidth, Khp.q “ Kp.{hq

and Kp.q is a kernel function.

Therefore, an estimator plpβq of lpβq can be obtained by substituting µY ptq and

µXptq of lpβq with pµY ptq and pµXptq, that is

plpβq “
n
ÿ

i“1

pỸi ´ X̃
J
i βq

JV ´1
i pỸi ´ X̃

J
i βq,

where Ỹi “ Yi ´ pµY ptiq, pµY ptiq “ ppµY pti1q, ..., pµY ptini
qqJ; X̃i and pµXptiq similarly

defined.

Ridge regression, designed specifically to handle correlated predictors, involves

introducing a shrinkage penalty λ to the WLS, then the weighted ridge regression

(WRR) estimator of β is the minimizer of the objective function

l˚pβq “ plpβq ` λβJβ,

the WRR estimator is then defined as

pβMR “ arg min
β

tpỸ ´ X̃βqJV ´1pỸ ´ X̃βq ` λβJβu (2.3)

“ pX̃JV ´1X̃ ` λIq´1X̃JV ´1Ỹ

“ Rpλqpβkernel,

where Rpλq “
´

pX̃JV ´1X̃q´1λ ` I
¯´1

and pβkernel is the minimizer of plpβq w.r.t

β.

It is straightforward to show that the estimator of gptijq is

pgptijq “ pµY ptijq ´ pµJXptijq
pβMR.

Further, the best linear unbiased estimator (BLUE) of the random effects bi may be

proceeded by calculating their conditional expectations given Yi while estimating

β by pβMR. This gives

pbi “ Erbi|Yis “ DiZ
J
i V

´1
i pỸi ´ X̃

J
i
pβMRq “ DiZ

J
i V

´1
i

`

Yi ´X
J
i
pβMR ´ pgptiq

˘

.

Fan and Li (2001) suggested the GCV to select the tuning parameter λ, the

GCV statistic is defined by

GCV pλq “
RSSpλq{n

p1´ tr
`

dpλq
˘

{nq2
,

where RSSpλq “ pỸ ´ X̃JpβMRq
JV ´1pỸ ´ X̃JpβMRq and dpλq “ X̃pX̃JV ´1X̃ `

λIq´1X̃JV ´1`ZDZJpI´X̃rpX̃JV ´1X̃`λIq´1X̃JV ´1sq. We select pλ “ arg min
λ

GCV pλq.
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In the following, we establish the limiting distribution of the WRR estimator.

The Theorem 2.1 concerning the kernel method is given in Lin and Carroll (2001).

We quote it here to ease comparison with properties of the MR method given in

Theorem 2.2.

Theorem 2.1. Suppose that h9n´α, 1
5 ď α ď 1

3 and n ÝÑ 8 and define

X̃ “ X “ lim
nÝÑ8

Bpgpt;βq

Bβ
. (2.4)

Then pβK converges in distribution:
?
ntpβkernel ´ β ` h

2bkernelpβ, gq{2u
D
ÝÑ Np0, Vkernelq

where

bkernelpβ, gq “ EtX̃TV ´1X̃u´1EtX̃TV ´1gp2qptqu, (2.5)

Vkernel “ EtX̃TV ´1X̃u´1EtpZ1 ´ Z2q
TΣpZ1 ´ Z2quEtX̃

TV ´1X̃u´1.

Here X̃ “
`

X ´ µXptq
˘

, Σ “ varpY |X, tq, Z1 “ V ´1X̃, Z2 “ pZ
1
2 , . . . , Z

m
2 q with

Zj2 “
t
řm
k“1

řm
l“1EpX̃

kV kl|tl “ tjqufjpt
jq

řm
l“1 flpt

jq
, (2.6)

and V kl denotes the pk, lq entry of V ´1.

Theorem 2.2. Under the assumptions of Theorem 2.1, the mixed ridge estima-

tor pβMR converges in distribution:
?
ntpβMR ´ Rpλq

`

β ` h2bkernelpβ, gq{2
˘

u
D
ÝÑ

N
`

0, RpλqVkernelR
Jpλq

˘

.

3. E-M Algorithm

Whereas, improving the efficiency of regression coefficients are related to estima-

tion of the covariance function, the solution is found by an iterative algorithm

between β, bi, gptq and inverse of the estimated covariance matrix V . The pro-

posed algorithm is an extention of E-M algorithm with a structured covariance

matrix of random errors. We apply the Newton–Raphson method to minimize

equations (2.3) and get the updating formula

pβ
rr`1s
MR “

”

n
ÿ

i“1

X̃Ji V
´1rrs
i X̃i ` λI

ı´1” n
ÿ

i“1

X̃Ji V
´1rrs
i Ỹi

ı

, (3.7)

pgrr`1sptijq “ pµY ptijq ´ pµJXptijq
pβ
rr`1s
MR ,

pb
rr`1s
i “ DiZ

J
i V

´1rrs
i pỸi ´ X̃

J
i
pβ
rr`1s
MR q,

Hence, we get the following iterative algorithm:



Semiparametric Ridge Regression for Longitudinal Data 165

Step 0: Set r “ 0. Let pD
rrs
i “ I, pσ2rrsptq “ 1 and pθrrs “ 1 .

Step 1: Set r “ r` 1. Update pβrr`1s, pb
rr`1s
i and pgrr`1sptq by the computed formulas

(3.7) based on current values of pV rrs “ diagppV
rrs
1 , . . . , pV

rrs
n q where pV

rrs
i “

ZiD
rrs
i ZJi `

pΣ
rrs
i , pΣi “ pAiRippθq pAi, pAi “ diagppσpti1q, . . . , pσptini

qq and Ripθq

is the correlation matrix of εi with pj, kq element equaling ρptij , tik, pθq.

Step 2: Update pD
rrs
i , pσ2rrsptq and pθrrs.

At this step, the ML estimator of Di would be

pD
rrs
i “ n´1

i
pb
rrs
i
pb
rrsJ
i .

The kernel estimator of σ2 is

pσ2rrs “

řn
i“1

řni

j“1 pr
2
ijKh1

pt´ tijq
řn
i“1

řni

j“1Kh1pt´ tijq
,

where prij “ Yiptijq ´ XJi ptijq
pβrrs ´ ZJi ptijq

pb
rrs
i ´ pgrrsptijq. To construct

the estimator of θ, we adopt the quasi-likelihood approach. By the quasi-

likelihood approach, the estimator of θ is defined by

pθ “ arg max
θ

´

´
1

2

n
ÿ

i“1

tlog|Ripθq| `pbJi
pA´1
i R´1

i pθq
pA´1
i
pbiu

¯

.

Step 3: Repeat Steps 1 and 2 until the selected covariates converge to a stable value.

4. Illustrations

4.1 Simulation studies

A simple simulation study is conducted to characterize the relative performances of

mixed ridge regression and the usual mixed-effects modeling approach in the con-

text of multiple, correlated predictors. To achieve different degrees of collinearity,

the explanatory variables are generated using the following formula

xik “ p1´ γ
2q

1
2ωik ` γ

2ωip, i “ 1, . . . , n “ 50, k “ 1, . . . , p “ 5, (4.8)

where ωik are independent and generated from a standard normal distribution, γ is

specified so that the correlation between any two explanatory variables is given by

γ2. Four different set of correlations corresponding to γ “ 0.70, 0.80, 0.90 and 0.99

are considered. For the nonparametric component in (1.1), we selecte a smooth
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function of the form gptijq “ 2sinp2πtijq. We further assume ni “ 4 measurements

for each subject i and simulate data from the following semiparametric mixed

model

Yiptijq “ x1,iptijqβ1 ` x2,iptijqβ2 ` x3,iptijqβ3 ` x4,iptijqβ4 ` x5,iptijqβ5

`gptijq ` bi ` εiptijq, (4.9)

where bi independently follow normal distribution Np0, σ2
b q, where σ2

b “ 0.25.

The true value of β was taken to be βT “ p0.5, 1, 1.5, 2, 0.1, 0.2q. The time tij is

generated from the Up0, 1q distribution. The random error process εiptq is taken to

be a Gaussian process with mean 0, variance function σ2ptq “ expp t12 q and ARp1q

correlation structure corrpεipsq, εiptqq “ ρ|t´s| for s ‰ t, where ρ “ 0.9 to capture

strong correlation errors.

We use the Epanechnikov kernel function Kpuq “ 0.75p1´u2q`. To investigate

the impact on the performance of two methods under a misspecified correlation

structure, we compare the performance of pβkernel and pβMR using the exchangable

working correlation structure pkernel´ Iq or pMR´ Iq when the true correlation

structure is ARp1q pkernel´Cq or pMR´Cq. For each of the estimators pβkernel

and pβMR, its estimation accuracy is measured by the mean squared error (MSE)

defined by

MSE “ ppβ ´ βqT ppβ ´ βq.

The simulation results for MSE of the proposed methods are presented in Table

2. Table 1 reports the empirical biases and standard deviations (SDs) of the

estimated β from the kernel and backfitting methods. We can take the following

observations:

(i) Mixed ridge method outperforms mixed method in terms of the MSE crite-

rion, even for the cases of misspecified correlation structure.

(ii) Mixed ridge estimator has a smaller bias and SD in all cases than the mixed

estimator. Hence, our proposed method becomes more stable and efficient.

(iii) Furthermore, as the correlation among predictors increases, the performance

of mixed modeling decreases more rapidly than the mixed ridge model in

terms of the biases, SDs and MSEs criterion. This result is more dramatic

at extreme levels of correlation (γ “ 0.99).
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Table 1: Estimated regression coefficients for important variates, bias(SD) based

on 500 replications.

Methods parameters γ “ 0.70 γ “ 0.80 γ “ 0.90 γ “ 0.99

MR-C β1 0.0316(0.0400) 0.0376(0.0475) 0.0514(0.0649) 0.1401(0.1748)

β2 0.0310(0.0390) 0.0368(0.0464) 0.0506(0.0635) 0.1446(0.1706)

β3 0.0282(0.0355) 0.0333(0.0422) 0.0452(0.0577) 0.1359(0.1572)

β4 0.0306(0.0388) 0.0364(0.0461) 0.0498(0.0630) 0.1397(0.1745)

β5 0.0351(0.0454) 0.0454(0.0592) 0.0690(0.0910) 0.2208(0.2644)

MR-I β1 0.0337(0.0414) 0.0402(0.0492) 0.0553(0.0677) 0.1686(0.2059)

β2 0.0330(0.0408) 0.0393(0.0484) 0.0540(0.0665) 0.1624(0.2011)

β3 0.0295(0.0375) 0.0351(0.0446) 0.0482(0.0613) 0.1453(0.1847)

β4 0.0362(0.0452) 0.0431(0.0537) 0.0593(0.0739) 0.1800(0.2236)

β5 0.0342(0.0427) 0.0444(0.0556) 0.0687(0.0865) 0.2518(0.3219)

kernel-C β1 0.0315(0.0400) 0.0375(0.0476) 0.0517(0.0656) 0.1596(0.2027)

β2 0.0313(0.0390) 0.0373(0.0464) 0.0513(0.0639) 0.1585(0.1975)

β3 0.0296(0.0358) 0.0352(0.0426) 0.0485(0.0586) 0.1499(0.1811)

β4 0.0308(0.0389) 0.0366(0.0463) 0.0504(0.0638) 0.1558(0.1971)

β5 0.0356(0.0456) 0.0463(0.0596) 0.0720(0.0930) 0.2782(0.3608)

kernel-I β1 0.0337(0.0414) 0.0402(0.0493) 0.0553(0.0679) 0.1708(0.2097)

β2 0.0332(0.0407) 0.0395(0.0485) 0.0543(0.0667) 0.1679(0.2062)

β3 0.0296(0.0376) 0.0353(0.0447) 0.0485(0.0615) 0.1500(0.1902)

β4 0.0362(0.0452) 0.0431(0.0538) 0.0594(0.0740) 0.1835(0.2288)

β5 0.0345(0.0428) 0.0444(0.0557) 0.0688(0.0868) 0.2633(0.3380)

4.2 CD4 data analysis

We now apply the semiparametric mixed model to the longitudinal CD4 cell count

data through the proposed methods. In this data set, there are a total of 2,376 CD4

measurements from 369 subjects available. The first objective of this analysis is to

characterize the population average time course of CD4 decay, while accounting

for the following additional predictor variables: smoking (packs per day); recre-

ational drug use (yes or no); numbers of dangerous relationships; and depression

symptoms as measured by the CESD scale (larger values indicate increased de-

pressive symptoms). The analysis was conducted on square-root transformed CD4

numbers whose distribution is more nearly Gaussian. We refer to Zeger and Diggle

(1994) and Wang et al (2005) for more detailed descriptions of the data.

Since there seems to exist a positive correlation among responses from the same

patient, we need to incorporate a correlation structure into the estimation scheme.
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Table 2: Mean square error based on 500 replications.

Methods γ “ 0.70 γ “ 0.80 γ “ 0.90 γ “ 0.99

MR-C 0.0079 0.0118 0.0238 0.2103

MR-I 0.0087 0.0128 0.0258 0.2704

kernel-C 0.0081 0.0121 0.0249 0.2871

kernel-I 0.0087 0.0129 0.0261 0.2919

Following Zeger and Diggle (1994), it is found that the compound symmetry

covariance matrix fitted the data reasonably well. The estimated correlation is

ρ “ 0.509.

To facilitate choosing the bandwidth h, we adopt the approach of Fan and Li

(2004). pσ2ptq is a one dimensional kernel regression of the squared residuals over

time. we estimate h “ 0.02 and h1 “ 0.015. We use bootstrap resampling to get

the SD of estimatrs.

The estimates of the parameters in the model are presented in Table 3. Based

on the results, we see that the mixed estimator has a larger SD than the mixed

ridge estimator. Age plays little role. The effects of smoking and depression are

found to be significant. In contrast, the other three effects are insignificant at

level 0.05, which are similar to Wang et al (2005) except that the effect of the

dangerous relationships is significant in their analysis.

Table 3: Regression coefficient estimates(SD) in the analysis of the CD4 data.

methods

Mixed Ridge Mixed

Age 0.0208(0.0021 ) 0.0212(0.0021)

Smoking 0.5808(0.0080) 0.5941(0.0082)

Drug 0.4582(0.0166) 0.5350(0.0194)

dangerous relationships 0.0597(0.0024) 0.0585(0.0024)

Depression -0.0531(0.0009) -0.0532(0.0009)

Conclusions

In this paper, we consider a more flexible model called semiparametric mixed-

effects model and described an extension and application of ridge regression for
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longitudinal data with a multicollinearity problem. We proposed a new estimator

to use when data sets may have correlated variables and within-subject effects. The

proposed ridge estimator combines the flexibility of nonparametric assumptions,

the usefulness of hierarchical linear models and ridge methodology. To improve

efficiency for regression coefficients, the estimation of the covariance function is

integrated with the iterative algorithm. As expected, the mixed ridge estima-

tion results in coefficients with smaller biases, variances and MSE than the mixed

model even for the cases of the misspecified correlation structure. Furthermore,

as the correlation among predictors increases, the performance of mixed model-

ing decreases more rapidly than the mixed ridge model. There were the results

obtained from numerical studies.
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