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1. Introduction

Estimation of a quantile density function from biased data is a frequent problem

in industrial life testing experiments and medical studies. Let X be a continuous

random variable with cumulative density function F (x), density function f(x) and

hazard function r(x). The quantile function of X is defined as

Q(x) = F−1(x) = inf{y ∈ R; F (y) > x} (1.1)

It satisfies F (Q(x)) = x. Parzen (1979) and Jones (1992) defined the quantile

density function as the derivative of Q(x), that is, q(x) = Q′(x). Note that the

sum of two quantile density functions is again a quantile density function.

Differentiating (1.1), we get

q(x) =
1

f(Q(x))
, x ∈ [0, 1] (1.2)

Nair and Sankaran (2009) defined the hazard quantile function as follows:

R(x) = r(Q(x)) =
f(Q(x))

1− F (Q(x))
=

1

(1− x)q(x)
, x ∈ (0, 1).

Hence q(x) appears in the expression for hazard quantile function and it would

be useful to study nonparametric estimators of this unknown quantile density

function.

In this paper, we consider the problem of estimating q(x) without observing

directly the sample X1, ..., Xn. We observe an i.i.d. sample Y1, ..., Yn from a biased

distribution with the following density function

g(y) = µ−1w(y)f(y)

where w denotes a positive function and µ is the real number defined by µ =∫
w(y)f(y)dy. Here, w is known. The density function f and the real number µ

are unknown. The objective is to estimate the quantile density function q from

Y1, ..., Yn.

The concept of the quantile density function estimation has been considered in

several papers and some smooth quantile function estimators have been proposed

for complete samples. For examples, the kernel method were used by Jones (1992)

and Soni and et al. (2012) for studying nonparametric estimators of quantile

density estimation. They proposed some smooth estimators and investigated their

asymptotic properties. Chesneau and et al. (2015) discussed the nonparametric

wavelet estimators of the quantile density function and proposed two kinds of the
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projection estimators in linear and nonlinear form.

In this study, we develop two types of wavelet estimators for the quantile

density function when data comes from a biased distribution function. Our wavelet

hard thresholding estimator which is introduced as a nonlinear estimator, has

the feature to be adaptive according to q(x). We show that these estimators

attain optimal and nearly optimal rates of convergence over a wide range of Besov

function classes.

The rest of this paper is organized as follows. In the next section, we present

our wavelet estimators. The main theoretical results are described in Section 3.

In Section 4, we investigate the performance of proposed estimator. The proofs of

the technical results appear in Sections 5.

2. Notations and estimators

We start this section by introducing the concept of Multiresolution Analysis (MRA)

on R as described in Meyer (1992). Let φ be a scale function and ψ its associ-

ated wavelet basis of Lp[0, 1], and define φi0j(x) = 2i0/2φ(2i0x − j) and ψij(x) =

2i/2ψ(2ix−j). We assume that the father and mother wavelets, φ(x) and ψ(x), are

bounded and compactly supported over [0, 1], that
∫
φ = 1 and that the wavelets

are r-regular. We call a wavelet ψ r-regular if ψ has r vanishing moments and r

continuous derivatives. An empirical wavelet expansion for all q ∈ Lp[0, 1] is given

by

q(x) =
∑
j∈Z

αi0jφi0j(x) +
∑
i≥i0

∑
j∈Z

βijψij(x), (2.3)

where,

αi0j =

∫
[0,1]

g(x)φi0j(x)dx =

∫
[0,1]

1

f(F−1(x))
φi0j(x)dx =

∫
[0,1]

φi0j(F (x))dx

Similarly,

βij =

∫
[0,1]

ψi0j(F (x))dx

Since F is unknown, we estimate it by the empirical estimator based on a sample

from biased data:

F̂n(x) =
µ̂

n

n∑
i=1

I(Yi < x)

w(x)
, x ∈ [0, 1] (2.4)
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This leads the following integral estimator for αi0j and βij

α̂i0j =

∫
[0,1]

φi0j(F̂ (x))dx, β̂ij =

∫
[0,1]

ψi0j(F̂ (x))dx (2.5)

Clearly, α̂i0j and β̂ij are not unbiased estimators for αi0j and βij . However, using

the dominated convergence theorem, one can prove that they are asymptotically

unbiased.

Based on α̂i0j and β̂ij , we consider two kinds of wavelet estimators for q(x): a

linear wavelet estimator qL(x) and a hard thresholding wavelet estimator qH(x),

both defined below:

Linear wavelet estimator. We define the linear wavelet estimator qL(x) by

q̃L(x) =

2i0−1∑
j=1

α̂i0jφi0j(x) (2.6)

Hard thresholding wavelet estimator. We define the hard thresholding wavelet

estimator qH(x) by

q̂H(x) =
∑
j∈Z

α̂i0jφi0j(x) +

R∑
i≥i0

∑
j∈Z

β̂ijI(|β̂ij | > κλi)ψij(x), (2.7)

where α̂i0j and β̂ij are defined by (2.5), the smoothing parameters i0 and R sat-

isfying 2i0 ' n1/1+2s and 2R ' n(log2 n)−2, κ is a large enough constant and λi

represents a threshold. Both R and λi will be chosen a posteriori (see Theorem

3.2).

The construction of q̃H(x) exploits the sparse nature of the wavelet decom-

position of q(x): only the wavelet coefficients with large magnitude contain the

main information (in terms of details) of q. Hence q̃H(x) aims to only estimate the

larger coefficients, and to remove the other (or estimate it by 0). Further aspects

and explanation related to this selection techniques can be found in Hardel and et

al. (1998) and Vidakovic (1999, p.171-173).

As is done in the wavelet literature, we investigate wavelet-based estimators

asymptotic convergence rates over a large range of Besov function classes Bsν,π ,

s > 0, 1 ≤ ν, π ≤ ∞. The parameter s measures the number of derivatives, where

the existence of derivatives is required in an Lp-sense, whereas the parameter π

provides a further finer gradation.

The Besov spaces include, in particular, the well-known Sobolev and Hölder spaces

of smooth functions Hm and Cs and (Bm22 and Bs∞,∞ respectively), but in ad-

dition less traditional spaces, like the spaces of functions of bounded variation,
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sandwiched between B1
1,1 and B1

1,∞. The latter functions are of statistical interest

because they allow for better models of spatial of inhomogeneity (e.g. Meyer

(1992) and Donoho and Johnstone (1995)).

For a given r-regular mother wavelet ψ with r > s, define the sequence norm

of the wavelet coefficients of a quantile density function g ∈ Bsν,q by

|q|Bsν,π = (
∑
j

|αi0j |ν)1/ν + {
∞∑
i=i0

[2iσ(
∑
j

|βij |ν)1/ν ]π}1/π (2.8)

Where σ = s + 1/2 − 1/ν. Meyer (1992) shows that the Besov function norm

‖q‖Bsν,π is equivalent to the sequence norm |q|Bsν,π of the wavelet coefficients of q .

Therefore we will use the sequence norm to calculate the Besov norm ‖q‖Bsν,π in

the sequel. We also consider a subset of Besov space Bsν,π such that sν > 1 and

ν, π ∈ [1,∞]. The spaces of the unknown function q(x) that we consider in this

paper are defined by

F sν,π(M) = {q : q ∈ Bsν,π, ‖q‖Bsν,π ≤M, supp q ⊆ [0, 1]},

i.e., F sν,π(M) is a subset of functions with fixed compact support and bounded in

the norm of one of the Besov spaces Bsν,π . Moreover, sν > 1 implies that F sν,π(M)

is a subset of the space of bounded continuous functions.

3. Asymptotic results

3.1 Assumptions

Before describing our results, we formulate the following assumptions:

• A.1: There exist two constants ω1 and ω2 such that, for any x ∈ [0, 1],

0 < ω1 < w(x) < ω2 <∞

• A.2: There exist a known constant f2 such that, for any x ∈ [0, 1],

f(x) ≤ f2

Also, In what follows, it is always assumed that, without loss of generality, the

functions f and w are defined on the unit interval [0, 1].
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3.2 Main results

In following theorems, we consider the rate of convergence of wavelet estimators

q̂L(x) and q̂H(x) under LP risk function. They attain optimal and nearly optimal

rates of convergence over a wide range of Besov space classes. Moreover,C denotes

any constant that does not depend on i, j and n. Its value may change from one

term to another and may depends on φ or ψ.

Theorem 3.1. Let p ≥ 2. Assume that the assumptions A.1 and A.2 hold and

q ∈ F sν,π(M) with s > 1/r, r ≥ 1 and π ≥ 1. Let q̂L(x) be as in (2.6) with i0 being

the integer such that 2i0 ' n1/1+2s. Then there exists a constant C > 0 such that

E

(∫
[0,1]

|q̂L(x)− q(x)|p
)
≤ Cn−

ps
2s+1

In following, theorem 3.2 explores the rates of convergence of q̂H(x) under the

Lp risk over Besov balls.

Theorem 3.2. Under assumptions A.1 and A.2, when p ≥ 2 and q̂H(x) be as in

(2.7) with is being the integer satisfying

2is '
(

n

log2 n

)1/1+2s

and λn being the threshold:

λn = κ

√
log n

n

Assume that q ∈ F sν,π(M) with s > 1/r, r ≥ 1 and π ≥ 1. Then there exists a

constant C > 0 such that

E

(∫
[0,1]

|q̂H(x)− q(x)|p
)
≤ C

(
log2 n

n

)− ps
2s+1

If we do a global comparison between the results of Theorems 3.1 and 3.2, the

rates of convergence achieved by q̂H(x) are better than the one achieved by q̂L(x).

Moreover, let us recall that q̂H(x) is adaptive while q̂L(x) is not adaptive due to

its dependence on s in its construction.

4. A Simulation Study

In this section we study the performance of our quantile density estimators based

on (2.7) using the preliminary estimators for cumulative density function F which
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mentioned in (2.4). In the following example, we simulate a biased random sam-

ple from Beta distribution for different sample sizes and calculate the average

norm criterion (ANorm) based on aforementioned competitors, where the ANorm

criterion of the estimator ĝ is defined as

ANorm =
1

N

N∑
b=1

(
n∑
i=1

(f̂b(xi)− f(xi))
2

)1/2

.

with f̂b(.) being defined as an estimator of f(.) at the bth replication. The results

in this simulation study are obtained using Daubechies’s compactly supported

wavelet Symmlet 4 (see Daubechies (1992), p. 198) and Coiflet 2 (see Daubechies

(1992), p. 258), and primary resolution level j0 = 6 based on N = 100 repli-

cations. The code was written in MATLAB environment using the WaveLab

software. Lower values of ANorm are indicative of better performance. We also

list the corresponding standard errors. Recall that when the parameters in Beta

distribution are chosen from (0, 1), the corresponding quantile density function

satisfies all the conditions required to prove the results..

Example. Here we generate the random samples Xi, 1 ≤ i ≤ n from a Beta dis-

tribution with parameters α = 0.5, β = 0.6 along with the following non-negative,

bounded discontinuous biasing function,

w(x) =

 1, for x < 0.3,

x, for x ≥ 0.3.

Figure 1 shows the original density function pdf with black line along with two

versions of the new wavelet estimator of q, namely (i) the hard thresholding esti-

mator (q̂H) with blue line, (ii) the linear wavelet estimator (q̃L) with dotted green

line and (iii) the smoothed version of the hard thresholding estimator (q̂SH) with

dotted red line respectively.

Table 1 shows the values of ANorm and simulated standard errors for each one

of the three different quantile wavelet estimators, using hard threshold estimator,

a smoothed version of a hard threshold estimator, and the linear wavelet estimator

for the beta density mentioned above for different sample sizes. The new smoothed

version of hard threshold estimator has better performance compared to the hard

threshold estimator and the linear wavelet estimator. Also, the hard threshold

estimator is almost better than the linear wavelet estimator.
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Table 1: Computed values of ANorm and simulated standard errors for various

sample sizes; ANorms are located in the first row and standard errors in the second

row.

ANorm and Simulated Standard Error

Estimation Methods

n = 128 n = 256 n = 512 n = 1024 n = 2048

The smoothed hard threshold 1.776 2.492 3.197 3.874 8.325

estimator ĝSH 0.157 0.156 0.141 0.121 0.184

The hard threshold estimator ĝH 1.885 2.643 3.583 4.90 8.859

0.166 0.165 0.158 0.140 0.196

The linear wavelet estimator ĝL 2.484 5.145 3.969 5.435 8.448

0.220 0.322 0.175 0.170 0.187

4.1 Auxiliary results

In the following section we provide some asymptotic results that are of importance

in proving the theorem. The proof of Theorem 3.1 is a consequence of Propositions

4.2 and 4.3 of Chesneau and et al. (2015) and we describe them below. They

show that the estimators β̂jk defined by (2.5) satisfy a standard moment inequality

and a specific concentration inequality. Before presenting these inequalities, the

following lemma determines an upper bound for |β̂ij − βij |.

Lemma 4.1. Suppose that the assumptions of Theorem 3.1 are satisfied. Then,

for any i ∈ {i0 + 1, ..., R} and any j ∈ {0, ..., 2i − 1}, the estimator β̂ij defined by

(2.5) satisfies

|β̂ij − βij | ≤ K23i/2
∫
[0,1]

|F̂ (x)− F (x)|dx

≤ K23i/2 sup
[0,1]

|F̂ (x)− F (x)|.

with K = sup[0,1] |ψ′(x)| and ψ′ij(x) = 23i/2ψ(2ix− j).

Proposition 4.2. Let p ≥ 2. Suppose that the assumptions of Theorem 3.1 are

satisfied, then there exists a constant C > 0 such that, for any i ≥ i0, and n large

enough, the estimator β̂ij, defined by (2.5) satisfies the following:

E
(
|β̂ij − βij |2p

)
≤ Cn−p (4.9)
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Figure 1: Quantile biased density estimators via hard thresholding method; the

true density function (solid line), the smoothed version of hard thresholding esti-

mator ( blue line), the hard thresholding estimator (dotted red line) and the linear

wavelet estimator(dotted green line).

The expression in proposition (4.2) holds for α̂ij as well, replacing β̂ij by α̂ij and

βij by αij .

Proposition 4.3. Let p ≥ 2. Under the assumptions of Theorem 3.1, there exists

a constant c > 0 such that, for any i ≥ i0, and large enough n, the estimators β̂ij

defined by (2.5) satisfy the following concentration inequality:

P
((
|β̂ij − βij |

)
≥ λn

)
≤ 2

(
log n

n

)p
, (4.10)

for some constant C > 0.

5. Proof

In this section, C represents a constant which may differ from one term to another.

We suppose that n is large enough.

Proof of the propositions 4.2 and 4.3: Let us observe that

β̂ij − βij =

∫
[0,1]

(
ψi0j(F̂ (x))− ψi0j(F (x))

)
dx

=

∫
[0,1]

(
ψi0j(Û(x))− ψi0j(x)

)
q(x)dx
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with

Û(x) =
µ̂

n

n∑
i=1

I(Yi < x)

w(x)
, Ui = F (Xi)

Then the proofs of propositions 4.2 and 4.3 follow from the technical part of

(Kerkyacharian and Picard (2004), Subsection 9.2.2. pages 1093 - 1098) with

q instead of f(G−1) Let us mention that for the validity of results we need to

suppose (A) and a restriction on i considered in our study, i.e., 2i ≤
√
n log n.

Proof of the Theorem 3.1: Based on empirical wavelet expansion in Eq.(2.3),

we can write

E

(∫
[0,1]

|q̂L(x)− q(x)|p
)
≤ 2p−1 (T1 + T2) (5.11)

where

T1 = E

∫
[0,1]

|
2i0−1∑
j=0

(α̂i0j − αi0j)φi0j(x)|pdx


and

T2 =

∫
[0,1]

∣∣∣∣ ∞∑
i=i0

2i−1∑
j=1

βijψij(x)

∣∣∣∣pdx
Using Proposition 4.2 and the Cauchy-Schwarz inequality, we obtain

T1 ≤ C2i0(p/2−1)
2i0−1∑
j=0

E
(∣∣α̂i0j − αi0j∣∣p)

≤ C2i0(p/2−1)
2i0−1∑
j=0

(
E
(

(α̂i0j − αi0j)
2p
))1/2

≤ C2i0(p/2−1)2i0n−p/2 = C(2i0n−1)p/2 (5.12)

On the other hand, by noting that q ∈ F sν,π(M) and proceeding as in (Donoho and

et al. (1996), eq. (24)), we have immediately

T2 ≤ C2−i0sp (5.13)

It follows from (5.11), (5.12), (5.13) and the definition of i0 that

E

(∫
[0,1]

|q̂L(x)− q(x)|p
)
≤ Cn−

ps
2s+1 (5.14)
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Proof of the Theorem 3.2: For the sake of simplicity, we set θ̂ij = β̂ij − βij .
Applying the Minkowski inequality and an elementary inequality of convexity, we

have E
(
‖q̂H − q‖pp

)
≤ 4p−1 (T1 + T2 + T3 + T4), where

T1 = E‖(α̂i0j − αi0j)φi0j(x)‖pp,

T2 = E‖
R∑
i=i0

2i−1∑
j=0

βijψij(x)I(|β̂ij | < λn)‖pp,

T3 = E‖
R∑
i=i0

2i−1∑
j=0

θ̂ijψij(x)I(|β̂ij | ≥ λn)‖pp,

T4 = E‖
∞∑

i=R+1

2i−1∑
j=0

βij‖pp,

In order to prove the above theorem, it suffices to bound each term T1, T2, T3 and

T4 separately.

Lemma 5.1. Assume u ∈ Rn and ‖u‖p = (
∑
i |ui|p)1/p, for 0 < p1 ≤ p2 ≤ ∞.

Then the following inequalities hold:

‖u‖p2 ≤ ‖u‖p1 ≤ n
1
p1
− 1
p2 ‖u‖p2 .

Lemma 5.2. Using the Lp Minkowski inequality yields

• {|β̂ij | < κλn, |βij | ≥ 2κλn} ⊆ {|β̂ij − βij | ≥ κλn
2 }

• {|β̂ij | ≥ κλn, |βij | < κλn
2 } ⊆ {|β̂ij − βij | ≥

κλn
2 }

• {|β̂ij | < κλn, |βij | ≥ 2κλn} ⊆ {|βij | ≤ |β̂ij − βij |}

The upper bound for T1: Using a Lp norm result on wavelet series (see

[Hardel and et al. (1998), Proposition 8.3]), the Cauchy-Schwarz inequality and

Proposition 4.2, we obtain

T1 = E‖(α̂i0j − αi0j)φi0j(x)‖pp ≤ C2i0(
p
2−1)

2i0−1∑
j=0

E (α̂i0j − αi0j)
p

≤ C2i0(
p
2−1)

2i0−1∑
j=0

(
E (α̂i0j − αi0j)

2p
) 1

2

≤ C2i0(
p
2−1)2i0n−

p
2 = C(2i0n−1)

p
2 ,
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Based on our choice of i0 = 0, we have T1 = O(n−p/2).

The upper bound for T4: First, let’s consider ν < p. From Lemma 5.1 and

(2.8), we have ‖βi.‖p ≤ ‖βi.‖ν ≤M2−iσ. Thus
∑
j |βij |p ≤Mp2−ipσ. Since sν > 1

and σ > 1/2, we have

T4 ≤ C

( ∞∑
i=R+1

2−iσ

)p
≤ C2−Rσp

On the basis of our choice R with 2R ' n(log2 n)−2 and pσ > ps/(1 + 2s), we

obtain T4 = O(n−ps/(1+2s)).

For ν ≥ p which p ≥ 2, from Lemma 5.1, we have ‖βi.‖p ≤ (C2i)
1
p−

1
ν ‖βi.‖ν ≤

M2−is. However, we can show that

T4 ≤ C

 ∞∑
i=R+1

2i−1∑
j=0

|βij |p
 1

p


p

≤ C

( ∞∑
i=R+1

2−is

)p
≤ C2−Rsp

Again, on the basis of our choice R with 2R ' n(log2 n)−2, we obtain T4 =

O(n−ps/(1+2s)).

The upper bound for T2: Applying the Minkowski inequality and an elementary

inequality of convexity, we have T2 ≤ 2p−1(T21 + T22), where

T21 = E
(
‖
∑R
i=i0

∑2i−1
j=0 βijψij(x)I(|β̂ij | < κλn)I(|βij | < 2κλn)‖pp

)
,

T22 = E
(
‖
∑R
i=i0

∑2i−1
j=0 βijψij(x)I(|β̂ij | < κλn)I(|βij | ≥ 2κλn)‖pp

)
The upper bound for T21: For the first term T21, we have T21 ≤ 2p−1(T211 +

T212), where

T211 = E

∥∥ is∑
i=i0

2i−1∑
j=0

βijψij(x)I(|β̂ij | < κλn)I(|βij | < 2κλn)
∥∥p
p

 ,

≤ C
∥∥ is∑
i=i0

2i−1∑
j=0

βijψij(x)I(|βij | < 2κλn)
∥∥p
p

≤ C
is∑
i=i0

2i(p/2−1)
[2i−1∑

j=0

|βij |pI(|βij | < 2κλn)

1/p ]p
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Now, from the definition of λn and by considering 2is '
(
n(log2 n)−1

)1/1+2s
, we

have

T211 ≤ C
is∑
i=i0

(
2i(p/2−1)2i(λn)p

)
≤ C

(
2isλ2n

)p/2 ≤ C ( n

log2 n

)−ps/1+2s

The upper bound for T212: For ν ≥ 2, based on Lemma 5.1, for any g ∈ Bsν,q,
we have

T212 = E

‖ R∑
i=is+1

2i−1∑
j=0

βijψij(x)I(|β̂ij | < κλn)I(|βij | < 2κλn)‖pp

 ,

≤ C
R∑

i=is+1

∑
j

|βij |p ≤ C
R∑

i=is+1

2−ips ≤ C2−isps ≤ C
(

n

log2 n

)−ps/1+2s

Putting the upper bounds of T211 and T212 together, we conclude that

T21 ≤ C
(

n

log2 n

)−ps/1+2s

(5.15)

The upper bound for T22: By the Cauchy-Schwarz inequality and from Lemma

5.2, Proposition 4.2 and 4.3, we have

T22 = E

‖ R∑
i=i0

2i−1∑
j=0

βijψij(x)I(|β̂ij | < κλn)I(|βij | ≥ 2κλn)‖pp


≤ C

R∑
i=i0

2i−1∑
j=0

[
E
(
|β̂ij − βij |2p

) ]1/2[
P

(
|β̂ij − βij | >

κλn
2

)]1/2
≤ C

R∑
i=i0

2in−p/2
(

log2 n

n

)p/2
≤ C2Rn−p/2

(
log2 n

n

)p/2

≤ C
(

log2 n

n

)p/2
≤ C

(
log2 n

n

)ps/1+2s

(5.16)

Now, by using the results in Eq.(5.15) and (5.16), we have

T2 ≤ C
(

n

log2 n

)−ps/1+2s

.
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The upper bound for T3: By the Minkowski inequality and an elementary

inequality of convexity, we have T3 ≤ 2p−1 (T31 + T32), where

T31 =E‖
R∑
i=i0

2i−1∑
j=0

θ̂ijψij(x)I(|β̂ij | ≥ κλn)I(|βij | <
κλn

2
)‖pp,

T32 =E‖
R∑
i=i0

2i−1∑
j=0

θ̂ijψij(x)I(|β̂ij | ≥ κλn)I(|βij | ≥
κλn

2
)‖pp

Applying the same argument as in T2, to find an upper bound for T31 and T32.

The upper bound for T31: Using Lemma 5.2, the Cauchy-Schwarz inequality,

and the propositions 4.2 and 4.3, we obtain

E

(
|θ̂ij |pI(|β̂ij | ≥ κλn)I(|βij | <

κλn
2

)

)
≤
[
E(|θ̂ij |)2p)

] 1
2 [
P

(
|β̂ij − βij | >

κλn
2

)]1/2
≤ Cn−p (5.17)

From (5.17), and the fact that
∥∥ψij∥∥pp = 2i(p/2−1)

∥∥ψ∥∥, we have

T31 ≤ CE

∥∥∥∥
 R∑
i=i0

2i−1∑
j=0

|θ̂ij |2I(|β̂ij | ≥ κλn)I(|βij | <
κλn

2
)|ψij(x)|2

 1
2 ∥∥∥∥p

p


≤ C

∥∥∥∥
 R∑
i=i0

2i−1∑
j=0

[
E(|θ̂ij |pI(|β̂ij | ≥ κλn)I(|βij | <

κλn
2

)
] 2
p |ψij(x)|2

 1
2 ∥∥∥∥p

p

≤ Cn−p
∥∥∥∥
 R∑
i=i0

2i−1∑
j=0

|ψij(x)|2
 1

2 ∥∥∥∥p
p

≤ Cn−p
R∑
i=i0

2i−1∑
j=0

∥∥ψij(x)
∥∥p
p

≤ Cn−p2R(p/2−1) ≤ Cn−p/2

Where the last inequality arises from this fact 2R ≤ n.

The upper bound for T32: By the Minkowski inequality and an elementary

inequality of convexity, we have T32 ≤ 2p−1 (T321 + T322), where

T321 = E

∥∥∥∥∑is
i=i0

∑2i−1
j=0 θ̂ijψij(x)I(|β̂ij | ≥ κλn)I(|βij | ≥ κλn

2 )

∥∥∥∥p
p

T322 = E

∥∥∥∥∑R
i=is+1

∑2i−1
j=0 θ̂ijψij(x)I(|β̂ij | ≥ κλn)I(|βij | ≥ κλn

2 )

∥∥∥∥p
p

The upper bound for T321: Using a Lp norm result on wavelet series (see

(Hardel and et al. (1998), Proposition 8.3)), Proposition 4.2 and the Cauchy-
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Schwarz inequality, we obtain

T321 ≤ CE

∥∥∥∥
 is∑
i=i0

2i−1∑
j=0

|θ̂ij |2|ψij(x)|2
 1

2 ∥∥∥∥p
p


≤ C

∥∥∥∥
 is∑
i=i0

2i−1∑
j=0

[
E(|θ̂ij |p)

] 2
p |ψij(x)|2

 1
2 ∥∥∥∥p

p

≤ Cn−
p
2

is∑
i=i0

2i−1∑
j=0

∥∥ψij(x)
∥∥p
p
≤ Cn−

p
2

∥∥ψ∥∥p
p

is∑
i=i0

2i2i(p/2−1)

≤ C
(
2isn−1

) p
2 (5.18)

The upper bound for T322: First, we find the upper bound for ν ≥ 2. Nothing

2|βij |(κλn)−1 ≥ 1 and from proposition 4.2, we have

T322 ≤ CE

∥∥∥∥
 R∑
i=is+1

2i−1∑
j=0

|θ̂ij |2I(|βij | ≥
κλn

2
)|ψij(x)|2

 1
2 ∥∥∥∥p

p


≤ C

∥∥∥∥
 R∑
i=is+1

2i−1∑
j=0

[
E(|θ̂ij |p)

] 2
p I(|βij | ≥

κλn
2

)|ψij(x)|2
 1

2 ∥∥∥∥p
p

≤ Cn−
p
2

∥∥∥∥
 R∑
i=is+1

2i−1∑
j=0

|βij |λ−1n |ψij(x)|2
 1

2 ∥∥∥∥p
p

≤ Cn−
p
2 λ−p/2n

R∑
i=is+1

∑
j

|βij |p ≤ C
R∑

i=is+1

2−ips ≤ C2−isps (5.19)

It follows from (5.18), (5.19) and the definition of 2is '
(

logn
n

)1/1+2s

that T32 =

O

((
logn
n

)−ps/1+2s
)

.

Finally, by Combining these four bounds together, we complete the proof of The-

orem 3.2.
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