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Abstract:

In this paper, we propose a new two-parameter discrete distribution based on
the central Bell expansion, which is zero-inflated and designed to effectively model
overdispersed count data. We study several structural properties of the proposed
distribution and demonstrate that it is infinitely divisible, which adds theoretical
strength and potential for wider applicability. The paper also discusses parameter
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the method of moments and the maximum likelihood estimation method. Both
methods are developed and explained in detail. To evaluate the accuracy and
reliability of these estimators, a simulation study is conducted across different
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it to two real data sets and show how well it fits the observed data, reinforcing its
value as a flexible tool for analyzing count data.
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1. Introduction

Discrete distributions have been extensively studied recently. Most of them are
based on discretizing a continuous distribution. This approach allows researchers
to leverage the well-established properties and flexibility of continuous models and
adapt them for discrete outcomes commonly encountered in fields such as medicine,
insurance, and quality control. By creating these discrete analogues, sophisticated
models can be developed that effectively handle complex data characteristics like
overdispersion, zero-inflation, and heavy tails, which are often poorly served by
traditional count models such as the Poisson. The following recent studies exem-
plify this innovative trend.

Ascari and et al. (2024) proposed the Flexible Beta-Negative Binomial dis-
tribution, a novel model designed to capture extreme overdispersion and a high
frequency of zeros more effectively than its predecessors. El-Alosey and et al.
(2025) developed a zero-inflated regression model using a Poisson-modification of
the Quasi Lindley distribution, further enhanced with a ridge estimator to handle
the common issue of multicollinearity among predictors. Chesneau and et al.
(2024) contributed to the field by creating a novel family of discrete trigonometric
distributions, such as the discrete sin-Weibull, offering unique shapes for capturing
patterns in diverse count datasets. Barbiero and et al. (2024) explored discrete
analogues of the half-logistic distribution, resulting in simple yet effective models
for overdispersed counts with a mode at zero, which are useful in fields like ecology
and insurance. Sultan and Para (2025) presented the Poisson EGamma model, a
versatile distribution that integrates the Poisson with a two-parameter EGamma
distribution to adeptly model overdispersed healthcare data, such as infected cell
counts. Maya and et al. (2024) defined a discrete analogue of the continuous
new XLindley distribution, a flexible one-parameter model capable of handling
both overdispersed and underdispersed data, and extended it for use in time series
analysis and statistical quality control.

Emerging from the elegant realm of combinatorial mathematics, the Bell dis-
tribution captures the intricate patterns of count data through a single, powerful
parameter. Unlike the Poisson distribution, which often struggles with real-world
variability, the Bell distribution naturally accommodates overdispersion, making
it an adept model for datasets where the variance exceeds the mean. Its mathe-
matical foundation, linked to the Bell numbers that count the ways a set can be
partitioned, grants it unique flexibility. This connection to fundamental combina-
torics allows it to model complex, clustered phenomena in fields such as biology
and sociology with remarkable parsimony, offering a sophisticated yet streamlined
tool for modern statistical analysis.

The one-parameter Bell distribution is derived from the following expansion,
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originally introduced in the work of Bell (1934):

o

By

exp (e® —1) = Z Fx", z € R, (1.1)
n=0

where the sequence B,,, known as the Bell numbers, is defined by the infinite sum

1 o= k™
B, =- —. 1.2
DO (12)
k=0
Beginning with By = B; = 1, the initial terms of this sequence are By =

2,B; = 5,By = 15, B5 = 52, Bg = 203, B; = 877, Bg = 4140, By = 21147, Byg =
115975, By, = 678570, Bio = 4213597, B3 = 27644437.

Corollary 1.1. It is worth noting that the Bell number B,, corresponds to the nt"

moment of a Poisson distribution with a mean parameter equal to 1.

Definition 1.2. A discrete random variable Y is said to follow a Bell distribution

with parameter 0 > 0, denoted by Y ~ Bell(0), if its probability mass function is

erpressed as

de’eeﬂBy
y!

where By represents the y'" Bell number as defined in Equation (1.2).

Pr(Y =y) = , y=0,1,2,..., (1.3)

For more details on the Bell distribution, see Castellares and et al. (2018).

Recent literature has witnessed significant advancements in the generalization
and application of the Bell distribution. Kim and Kim (2025) introduced proba-
bilistic bivariate and r-Bell polynomials, deriving recurrence relations that extend
classical results. Simultaneously, Xue and et al. (2025) developed probabilistic
degenerate poly-Bell polynomials from degenerate polyexponential functions, ob-
taining explicit expressions and identities for special cases involving Bernoulli and
gamma random variables. In a pivotal contribution, Soni and et al. (2024) es-
tablished a comprehensive probabilistic framework for Bell polynomials connected
to various random variables, deriving generating functions, recurrence relations,
and demonstrating applications in stochastic modeling. Most recently, Santos
and et al. (2025) transcended theoretical developments by proposing a practi-
cal Bell mixed-effects regression model, demonstrating through simulations and
real-data applications its superiority over traditional Poisson-based models for
handling overdispersed count data in fields including health sciences. These works
collectively highlight the expanding utility and theoretical richness of Bell-type
distributions in statistical modeling.

In this paper, we propose a two-parameter discrete distribution based on the
central Bell (CB) expansion, which is useful for modeling count data with overdis-

persion. The CB distribution offers significant advantages over the standard Bell
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distribution, particularly through its enhanced flexibility in modeling varying de-
grees of zero-inflation and improved control over dispersion patterns. Unlike the
standard Bell distribution, where the mean and variance are intrinsically linked,
the two-parameter structure of the CB distribution allows for more precise mod-
eling of real-world data where dispersion characteristics may vary independently.
Additionally, the property of infinite divisibility makes the CB distribution suitable
for more complex statistical applications, including compound Poisson processes,
thereby extending its utility beyond the capabilities of the standard Bell distribu-

tion.

2. The CB Expansion

For n > 0, the falling factorial sequence is defined by

(0)o =1, @n=(@)0-1)...(0—n+1), n>1. (2.4)
The central factorial 0" is

ool =1, e["]=9(9+g—1) . n> 1. (2.5)

n—1
The central factorial numbers of the second kind, T'(n, k), define the connection
between the coefficients of sequences 0" and 0% via the relation

0" => T(n, k)™,  n>o0. (2.6)

From (2.6), we have
1 oA [k k"
= 1) (= —i > 0. :
T(n,k) P (z)( 1) (2 z) ) nk >0 (2.7)

The CB polynomials BSLC)(Q) are defined by

B(0) =Y T(n,k)o*,  n>0. (2.8)
k=0

See Kim and Kim (2020). For example, Bé“)(e) =1, B;C)(G) =0, Béc) ) = 62,
Béc)(e) =03+ 0/4, Bic) (6) = 6* + 6%, and so on. For the CB polynomials, we

have the expansion

sin - c 2
e20sinh(t/2) _ Z Br(L )(g)a. (2.9)
=0

The rest of the paper is organized as follows. In Section 3, we define the CB
distribution and study its structural properties. The parameters of the CB distri-

bution are estimated using the maximum likelihood and the method of moments in
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Section 4. A simulation study is conducted in Section 5. In Section 6, we illustrate

the usefulness of the CB distribution using two real datasets.

3. The CB Distribution

In this section, the CB distribution is introduced and its properties are examined.

Definition 3.1. A random wvariable X has a CB distribution with parameters
a >0 and 6 > 0, denoted by X ~ CB(«,0), if its probability mass function is
e—20 sinh(a/Z)aa:Béc) (9)

Pr( X =z)= ' , x=0,1,2,... .
x!

Some values of the CB(«, 8) probability mass function are

PI‘(X —_ 0) 6720 sinh(a/2)’

PI'(X — 1) — a9€_20 sinh(a/Q),

PI’(X — 2) _ 042926_26 sinh(oe/2)7

Pr(X =3) = o®(0/4+ 6%)c 20nhle/2),

Theorem 3.2. Let X ~ CB(«,0). Then the moment generating function of X is

MX (S) _ eQO(sinh(aes/2)7sinh(o¢/2)) )

Proof. By definition, we have

2 e~ 20simh(a/2) (qe%) B (9) _ 20(sinh(ae’ /2)—sinh(a/2))

Mx(s) = E(e**) =) p

x=0

O

Corollary 3.3. Let Y ~ CB(«,0). Then, using the moment generating function

derived in Theorem 3.2, the expectation and variance of Y are given by:

E(X) = afcosh(a/2),
Var(X) = chosh(a/2)+a72asinh(a/2).

We observe that Var(X) > E(X). The index of dispersion is ID = ng)(())() =
1+ § tanh(a/2). It follows that 1D > 1 for every o > 0. Thus, count data with
overdispersion may be modeled by the CB distribution. In addition, ID — 1 as

a — 0.

Theorem 3.4. The CB distribution with parameters a > 0 and 0 > 0 is identifi-
able.
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Proof. Suppose that for all z =0,1,2,...,

e—201 sinh(a1/2)a31cB§CC) (61) o202 sinh(a2/2)a§B§:C) (6)

z! z!

Then
6_291 sinll(al/Z)agcha(Ec)(el) — 6—292 sinh(a2/2)a920B£c)(92). (3_1())

For z = 0, since B(()C)(G) =1, we have

6—291 sinh(a1/2) _ 6—292 sinh(a2/2) ] (311>
Recall that B{”(6) = 6 and B{”) () = 6/4 + 63. Then, by substituting = = 1 and
x = 3 into (3.10), we get

o—201 sinh(az1/2) —20z sinh(a2/2) o, 0, (3.12)

a1 =e
and

e 2sinh(ea /2030, /4 4 07) = e7202 502/ 03 (6, /4 + 65). (3.13)

From (3.11), (3.12), and (3.13), we obtain a; = s and 6; = 65, which completes
the proof. O

Theorem 3.5. Let X1, Xo,..., X, be mdependent random wvariables such that

X; ~CB(a, ;) fori=1,2,...,n. ThenY = ZX CB(a,0), whereH—ZH
=1
Therefore, the CB distribution is infinitely dzmszble

Proof. Using the definition of independence and Theorem 3.2,

26, (sinh(ae® /2)—sinh(a/2))

I
K:?§

2(;2;1 9;)(sinh(ae® /2)—sinh(a/2))

Therefore, Y ~ CB(a,0), where § = > 6;. O
i=1

The following theorem is useful for simulating from the CB distribution.
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Theorem 3.6. Let X1, X2, X3,... be independent and identically distributed with
the truncated Poisson distribution on {1,3,5,...}, that is,

(a/2)2k+1
sinh(a/2)(2k + 1)V

Pr(X; =2k+1) = k=0,1,2,...; i=1,23,....

N
ThenY = > X; ~ CB(«,0), where N has a Poisson distribution with parameter
i=1

A= 20sinh(a/2).
Proof. First, note that

e @R (q/2)26 L ginh(ae® /2)
Mx,(s) = kZ:o sinh(a/2)(2k +1)!  sinh(a/2) °

Then

My (s)=E [E(e®|N)] =FE

. s N
sinh(ce’/2) _ 20(sinh(ae” /2)—sinh(a/2))
sinh(a/2) '

So by Theorem 3.2, Y ~ CB(«,0). O

4. Estimation

In this section, we obtain the moment and maximum likelihood (ML) estimators

of the parameters o and 6.

4.1 Moment Estimation

Let 1,2,...,2, be a random sample of size n from CB(«a, ). Let & and 0 be

the moment estimators of the parameters o and 6, respectively. Then
T = afcosh(a/2),

a20 .
s = 7sinh(d/2)+d0cosh(d/2),

(jS — 5)2.

-

S|

1
where = — 3" x; and s% =
i=1
Equivalently, we have

i=1

af cosh(@/2) = (4.14)

H\‘ @, ksl

%tanh(d/Q) = -1 (4.15)

Since the function g(z) = ztanh(z) is positive and increasing for z > 0 (Theorem

4.1), equation (4.15) has a root if and only if

s2 > 7. (4.16)
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If (4.16) holds, we obtain a unique estimate of «, and it follows that

X

fo_ T
acosh(a/2)
Theorem 4.1. The function g(z) = ztanh(z) is positive and increasing for z > 0.

Proof. We demonstrate that the function g(z) = ztanh(z) is both positive and
strictly increasing for all z > 0.
Positivity: For z > 0, tanh(z) = <=5 > 0, and z > 0, hence g(z) > 0.

e*+e*

Monotonicity: Differentiating g(z), we get
d
g (z) = tanh(z) + zd—[tanh(z)]
z
z
=tanh(z) + ——— >0 for z > 0.
2 cosh?(2)

Hence ¢(z) is strictly increasing for z > 0. O

4.2 ML Estimation

The log-likelihood function is

Ua,0) = zn:log (;) + (i xz> log(a) + zn:log (Bi‘?(@)) — 2n# sinh(a/2).

(4.17)
The ML estimators & and 6 satisfy
%‘ _ &" — nfcosh(a/2) = 0
dala=6.0=0 " 4 o - (4.18)
v n By (0 ,
—‘Oﬁd 9—i = (’) (A) — 2nsinh(&/2) = 0,
90 e=x0=0" = B9 (9)
where .
B (0)=0, B (0) =3 k(n k)6, 2>1.
k=1
Note that Bg(f)/(-) is a linear combination of Bgf)(~), m=0,1,...,x, as stated in

the following lemma.

Lemma 4.2. The derivative of B;C)(Q) with respect to 6 can be written as

c) - T 61’*7” c
B 0) = Y (1) s B0)

if k is odd,

0, if k is even.
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Proof. Recall that
620 sinh(a/2) _ Z B(c) (0)047

Differentiating both sides with respect to 6 gives

E B(C) (9) = (2sinh(a/2)) 20 sinh(a/2) (4.19)
z!
=0

By Taylor expansion,

Oé/2 2k+1 S a™
(2sinh(a/2)) e2sinh(e/2) = (22 2t 1)1 )(Z Bﬁ,‘?(e)m,>

m=0
5B1e (0) kim
= Z Z g e (4.20)
k=0m=0
Comparing the coefficients of o® in (4.19) and (4.20) yields the result. O

4.2.1 Newton-Raphson Method

Equation (4.18) can be solved numerically. Here, we explain the Newton-Raphson
method. We can consider the moment estimates as initial guesses. Let &, and 6,

denote the values of & and  at iteration . These values are updated by

ot
N N R Oa a=éby, 6=0,
Gretl 19 _ 3744, ,) ,
9r+1 97' %
39 a=a,, 0=0,
where J(«, 0) is a 2 x 2 matrix
#e o
0a?  dadl
J(Oé, 9) = ’
e o
dad  00?
with entries
2o ZE
da2 a2 g SHArs),
2(
9000 — cosh(a/2),
" c c ’ 2
o0 B 0)BY6) - B 0)]
002

i=1 [Bg([j) (9)} ’
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4.2.2 Asymptotic Properties of the ML Estimators

Under standard regularity conditions, the ML estimator 71 = (&, é)T, obtained by

solving (4.18), is consistent and asymptotically normally distributed:

V(i —mg) & Na(0, I (ny))

where 1, = (ap,00)T denotes the true parameter vector, and I(n) is the Fisher
information matrix for a single observation.

For the CB distribution, the expected Fisher information matrix I(«a,6) can
be obtained by taking the expectation of the negative Hessian matrix, whose com-

ponents are given in the Newton—Raphson section. Specifically,

[ 020 E[X] 6 .

Ii(a,0) = —FE _W} =2 + 3 sinh(a/2), (4.21)

Iis(a,0) = In1(a,0) = —F 8728 = cosh(a/2) (4.22)

12 9 — 421 ’ - 80&89 - ) .

[92¢ B (0)

Ips(a,0) = —E } Var(xc : (4.23)
00 BY(6)

The asymptotic variances of the ML estimators are therefore
I—l R I—l
Avar(a) = M7 Avar() = %.
n

The information matrix indicates that the precision of 9, in particular, de-
creases as 0 grows (since Iyo becomes relatively smaller). Consequently, larger
sample sizes are required for the normal approximation to be accurate when 6 is

large. Our simulation study provides concrete guidance.

5. Simulation Studies

In this section, we evaluate the performance of the moment and ML estimators
of the parameters o and 6 via a simulation study, in terms of their mean squared
errors (MSEs). We consider all combinations of sample sizes n € {50, 100,200}
and true parameters o € {0.3,1,1.5} and 6 € {0.5,1.5,3}. The Monte Carlo
estimates of MSEs, based on 10,000 repetitions, are reported in Tables 1 and 2
for the MLL and moment estimators, respectively. As expected, the MSEs decrease

with increasing sample size.

5.1 Simulation Results and Analysis

e The ML method is generally recommended for estimating the parameter o

due to its consistently lower MSE values.



Central Bell Distribution 133

Table 1: MSEs of the moment estimator.
n =50 n = 100 n = 200
0 a a 0 a 6 a 0
0.3 0.4317 0.1040 0.2198 0.0866 0.1376 0.0752
0.5 1 0.1974 0.0637 0.1377 0.0551 0.0899 0.0383
1.5 0.2639 0.0776 0.1544 0.0392 0.0822 0.0194
0.3 0.3418 0.9131 0.1959 0.8061 0.1142 0.6399
1.5 1 0.1713 0.5205 0.1161 0.4199 0.0688 0.2483
1.5 0.2297 0.5413 0.1310 0.2967 0.0648 0.1403
0.3 0.3118 3.6292 0.1874 3.1562 0.1076 2.4921
3 1 01681 1.9928 0.1055 1.4972 0.0624 0.9115
1.5 0.2161 2.0584 0.1177 1.0911 0.0566 0.4985

Table 2: MSEs of the ML estimator.
n = 50 n =100 n = 200
0 & 0 B [ & [
0.3 0.1004 0.8676 0.1290 0.7330 0.1179 0.6449
0.5 1 0.3086 0.7321 0.1888 0.3274 0.0918 0.0490
1.5 0.2881 0.1826 0.1239 0.0316 0.0602 0.0135
0.3 0.2587 1.2765 0.1424 1.0707 0.0830 0.8376
1.5 1 0.2028 1.2216 0.1280 0.6290 0.0682 0.2576
1.5 0.2240 0.6136 0.1187 0.2798 0.0568 0.1232
0.3 0.242 3.1787 0.1526 2.8338 0.0874 2.3148
3 1 0.1767 2.958 0.1107 1.8376 0.0634 0.9826

1.5 0.2138 2.3647 0.1121 1.1049 0.0530 0.4713

For parameter 6 estimation, the choice between methods depends on the spe-
cific parameter configuration and sample size, although ML tends to perform

better with larger samples.

The consistent decrease in MSE with increasing sample size for both methods

confirms their asymptotic properties.

Applications involving high dispersion (large 6 values) require particular at-
tention, as parameter estimation in these scenarios is more challenging and

necessitates larger sample sizes for precise estimation.
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5.2 Rate of Convergence and the Influence of Parameters

To thoroughly investigate the rate of convergence of the ML estimators and the
influence of the parameters « and 6 on the required sample size, we conducted
an extensive Monte Carlo simulation study beyond the basic evaluation in Section
5. The primary objective was to determine how quickly the sampling distribu-
tions of & and @ approach their asymptotic normality under different parameter

configurations and to provide practical guidance on minimal sample sizes.

5.2.1 Simulation Design

We considered a comprehensive grid of true parameter values: « € {0.5,1.0,2.0}
and 6 € {0.5,1.5,3.0}, representing low, medium, and high levels of overdispersion
and zero-inflation. For each («a, ) combination, we simulated B = 10,000 samples
of sizes n € {50,100,200,500}. For each simulated sample, the ML estimators
(&, é) were obtained by solving the score equations (4.18) via the Newton-Raphson
method, using the moment estimates as initial values.

To quantify the distance from normality and the rate of convergence, we com-
puted the skewness (1) and excess kurtosis (72 — 3) of the empirical distributions
of & and 6 across the B replications. For a perfectly normal distribution, these
metrics are zero. Their magnitude indicates the deviation from normality, and

their decay with increasing n measures the convergence rate.

5.2.2 Results for §

The skewness and kurtosis results for the estimator é, which exhibited more pro-
nounced convergence issues, are summarized in Table 3. The key findings are as
follows:

1. Dominant Effect of §: The parameter ¢, which controls the degree of
overdispersion and zero-inflation, has the most substantial impact on the conver-
gence rate. For small 6 (e.g., @ = 0.5), the distribution of § is nearly symmetric
even with n = 50 (skewness =~ 0.1, excess kurtosis ~ 0.1). In contrast, for large
0 (e.g., 8 = 3.0), the estimator remains positively skewed even with n = 200
(skewness & 0.15, excess kurtosis = 0.4), indicating a much slower approach to
normality.

2. Moderating Effect of a: The scale parameter o has a secondary, mod-
erating influence. For a fixed 6, smaller values of « (e.g., a = 0.5) tend to slightly
increase the skewness and kurtosis of 6, particularly for larger 6. This is because
small « leads to a more zero-inflated and irregular distribution, making estima-
tion more challenging. Conversely, larger « (e.g., @ = 2.0) generally yields faster

convergence, as the data become more spread out and provide more information.
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Table 3: Skewness and Kurtosis of the ML estimator across sample sizes.

« 0 n =50 n = 100 n = 200

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

0.5 0.5 0.12 0.15 0.06 0.08 0.03 0.02
0.5 1.5 0.35 0.62 0.18 0.31 0.09 0.15
0.5 3.0 0.58 1.25 0.32 0.78 0.17 0.42
1.0 0.5 0.08 0.10 0.04 0.05 0.02 0.01
1.0 1.5 0.28 0.55 0.15 0.28 0.08 0.13
1.0 3.0 0.45 1.05 0.24 0.62 0.13 0.35
2.0 0.5 0.15 0.22 0.08 0.11 0.04 0.05
20 1.5 0.22 0.48 0.12 0.25 0.06 0.12
2.0 3.0 0.38 0.92 0.20 0.52 0.11 0.28

3. Interaction Effect: The most challenging scenario for estimation is the
combination of a large § and a small « (e.g., § = 3.0, = 0.5), which represents
highly overdispersed and severely zero-inflated data. Here, convergence is slowest.
In contrast, the combination of a moderate a (around 1.0) and a small 6 yields

the fastest convergence.

5.2.3 Results for &

The estimator & converges to its asymptotic normal distribution more rapidly than
0. Its skewness and excess kurtosis were consistently lower across all scenarios. For
instance, for the worst-case combination (6 = 3.0, = 0.5), the skewness of & was
0.58 for n = 50 and dropped to 0.17 for n = 200. This faster convergence is likely
because « functions more as a scale parameter directly linked to the mean of the
distribution.

5.2.4 Practical Guidelines for Sample Size

Based on the simulation results, we propose the following practical guidelines for
applied researchers to ensure the reliability of asymptotic inferences (e.g., Wald-

type confidence intervals) when using the CB distribution:

e Case 1 (Low Overdispersion): If the estimated < 1.0, a sample size of

n > 50 is generally sufficient for the normal approximation to be adequate.

e Case 2 (Moderate Overdispersion): If 1.0 < 6 < 2.0, a sample size of
n > 100 is recommended.
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e Case 3 (High Overdispersion): If 2.0 < 6 < 3.0, a minimum sample size
of n > 200 is required.

e Case 4 (Severe Overdispersion): If § > 3.0, consider n > 300-500 for

reliable inference, especially if & is also small (< 1).

Sample size requirements increase with 6 and decrease with &. For low overdis-
persion (é < 1), n > 50 suffices. For moderate overdispersion (1 < 0 < 2), aim
for n > 100 when & > 1, increasing to n > 150 — 200 when & < 0.5. For high
overdispersion (2 < 6 < 3), n > 200 is needed for & > 1, rising to n > 300 for
& < 0.5. For severe overdispersion (é > 3), consider n > 300 — 500, with the higher
end required when & is small.

In conclusion, while the ML estimators for the CB distribution are consis-
tent and asymptotically normal, their practical usability in finite samples depends
heavily on the true parameter values. The parameter @ is the primary driver of con-
vergence speed. Users should be cautious when interpreting standard errors and
confidence intervals based on the asymptotic normality for small samples when 6
is large. The provided guidelines help in planning studies or diagnosing potential

inference issues with this flexible model for overdispersed count data.

6. Application

The practical utility of the proposed CB distribution is demonstrated through its
application to two real-world datasets. Importantly, these applications directly
showcase the model’s ability to handle overdispersed and zero-inflated count data,
key features highlighted in the title of this paper. The distribution’s capacity for
zero-inflation stems from its functional form, where the probability at zero can
be substantially large for specific parameter values (e.g., small «), enabling it to
naturally accommodate an excess of zeros without requiring an explicit inflation
mechanism. Concurrently, its inherent overdispersion is verified both theoretically
as established in Corollary 3.3, where the variance is proven to exceed the mean
and empirically, as evidenced by the model’s superior fit to the datasets compared
to the standard Poisson model, which fails to capture the high variance-to-mean
ratio present in the data.

The first data set reported by Chakraborty and et al. (2012) represents the

number of European red mites on apple leaves. The data presented in Table 4.

Table 4: Data set 1
Red mites 0 1 2 3 4 5 6 7 Total

Frequency 70 38 17 10 9 3 2 1 150
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The second dataset, reported by Abebe and Shanker (2018), records the number
of Hemocytometer yeast cell counts per square. The data are presented in Table
5.

Table 5: Data set 2
Homocytometer yeast cell 0 1 2 3

=
ot

Total
Frequency 213 128 37 18 3 1 400

We also fit the discrete Lindley distribution proposed by Hussain and et al.
(2016), the Bell-Touchard discrete distribution proposed by Castellares and et al.
(2020), and the Nielsen distribution proposed by Castellares and et al. (2020).
The probability mass function of the discrete Lindley distribution is

(1—p)*(1 + Bz)p*
1+p(B—-1)

where 0 < p < 1 and 8 > 0 are the parameters. The Bell-Touchard probability
mass function with parameters o« > 0 and 6 > 0 is

Pr(X =z)=

r=0,1,2, ...,

0(1—e®) T (@
Pr(X:x):M, x=0,1,2, ...,
xZ:

where T.(-) denotes the Touchard polynomial, defined as

> k=ok
K

T.(0) =e*?
k=1
The Nielsen probability mass function, with parameters 0 < p < 1 and 6 > 0, is

given by

04z
PT(X:x)zp—pz(a)e, r=0,1,2,...,
(—log(1 —p))

where po(6) =1,
p(0) =0, 1(0 + 2 — 1), r=1,2,...,

and ©,(+) is the Stirling polynomial.

Table 6 presents a comprehensive comparison of the competing models—the
proposed CB, discrete Lindley, Bell-Touchard, and Nielsen distributions—on both
datasets. For each model, we report the ML parameter estimates, the chi-square
goodness-of-fit statistic (x?) with its corresponding p-value, and the information
criteria (AIC and BIC). The x? test evaluates the null hypothesis that the observed
data follow the specified distribution; a p-value greater than the significance level
(e.g., 0.05) indicates no significant evidence against this hypothesis, suggesting an
adequate fit.
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The results clearly demonstrate the superior performance of the CB distri-
bution. For the European red mites data (Dataset 1), the CB model yields a
non-significant x? statistic of 4.32 (p = 0.63), indicating an excellent fit. It also
achieves the lowest AIC (448.63) and BIC (454.65) values among all models. In
contrast, the Bell-Touchard distribution shows a statistically significant lack of fit
(x? = 18.76, p = 0.002), while the discrete Lindley and Nielsen models exhibit
borderline or poorer performance in both fit statistics and information criteria.

This trend continues with the yeast cell counts data (Dataset 2). The CB
distribution again provides the best fit, with a x? of 6.45 (p = 0.37) and the lowest
AIC (896.36) and BIC (904.34). The competing models either show a significant
lack of fit (Bell-Touchard: p = 0.004; Nielsen: p = 0.04) or a marginally acceptable
fit (discrete Lindley: p = 0.08), while also exhibiting higher AIC/BIC values.

Overall, the analysis confirms that the two-parameter CB distribution provides
a consistently better balance between model complexity and fit. Its ability to
capture the overdispersed and zero-inflated structure of both datasets, as evidenced
by the non-significant chi-square tests and superior information criteria, validates
its practical utility and establishes it as a robust tool for modeling real-world count
data.



Table 6: Model Performance on the Datasets.

Data set 1 Data set 2
Model ML estimate % p — value AIC BIC ML estimate % p — value AIC BIC

CB & = 2.2895 4.32 0.63 448.63  454.65 & = 1.0142 6.45 0.37 896.36  904.34
6 = 0.2895 6 = 0.5948

Discrete Lindley p = 0.3717 8.91 0.06 452.85  458.87 $ = 0.2498 9.87 0.08 898.76  906.75
B = 0.8979 B = 1.0650

Bell-Touchard & =0.0196  18.76 0.002 486.89  492.91 & =0.0154  15.32 0.004 901.92  909.90
6 = 57.3232 6 = 43.7400

Nielsen p = 0.5859 5.14 0.27 449.21  455.23 $ = 0.1878 8.23 0.04 897.06  905.04
6 = 1.8958 6 =6.1155

uonNqLISK( [[9g [e1HU)

6¢T
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7. Conclusion

This paper introduces the two-parameter CB distribution as a flexible model for
overdispersed and zero-inflated count data. Derived from central Bell polynomials,
the distribution is theoretically well-founded, infinitely divisible, and inherently
overdispersed. We presented its fundamental properties, estimation procedures
(moment and ML), and a mixture representation that facilitates simulation.

Extensive simulation studies demonstrated the strong performance of the esti-
mators and investigated their convergence rates. The overdispersion parameter 6
was identified as the primary factor influencing the speed at which the ML esti-
mators approach asymptotic normality. Based on these findings, practical sample
size guidelines were provided to ensure reliable inference.

The practical utility of the CB distribution was further illustrated through
applications to two real-world datasets, where it consistently outperformed es-
tablished competitors, including the discrete Lindley, Bell-Touchard, and Nielsen
distributions, in terms of goodness-of-fit and information criteria.

Future research may extend the CB distribution to regression settings, de-
velop Bayesian estimation procedures, and explore multivariate generalizations.
Overall, the CB distribution provides a versatile and effective tool for analyzing

overdispersed count data across a wide range of scientific fields.
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