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Abstract:

In this paper, we propose a new two-parameter discrete distribution based on

the central Bell expansion, which is zero-inflated and designed to effectively model

overdispersed count data. We study several structural properties of the proposed

distribution and demonstrate that it is infinitely divisible, which adds theoretical

strength and potential for wider applicability. The paper also discusses parameter

estimation techniques for the distribution, focusing on two common approaches:

the method of moments and the maximum likelihood estimation method. Both

methods are developed and explained in detail. To evaluate the accuracy and

reliability of these estimators, a simulation study is conducted across different

sample sizes, allowing us to assess their performance under various conditions. To

illustrate the practical importance and usefulness of the new distribution, we apply

it to two real data sets and show how well it fits the observed data, reinforcing its

value as a flexible tool for analyzing count data.
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1. Introduction

Discrete distributions have been extensively studied recently. Most of them are

based on discretizing a continuous distribution. This approach allows researchers

to leverage the well-established properties and flexibility of continuous models and

adapt them for discrete outcomes commonly encountered in fields such as medicine,

insurance, and quality control. By creating these discrete analogues, sophisticated

models can be developed that effectively handle complex data characteristics like

overdispersion, zero-inflation, and heavy tails, which are often poorly served by

traditional count models such as the Poisson. The following recent studies exem-

plify this innovative trend.

Ascari and et al. (2024) proposed the Flexible Beta-Negative Binomial dis-

tribution, a novel model designed to capture extreme overdispersion and a high

frequency of zeros more effectively than its predecessors. El-Alosey and et al.

(2025) developed a zero-inflated regression model using a Poisson-modification of

the Quasi Lindley distribution, further enhanced with a ridge estimator to handle

the common issue of multicollinearity among predictors. Chesneau and et al.

(2024) contributed to the field by creating a novel family of discrete trigonometric

distributions, such as the discrete sin-Weibull, offering unique shapes for capturing

patterns in diverse count datasets. Barbiero and et al. (2024) explored discrete

analogues of the half-logistic distribution, resulting in simple yet effective models

for overdispersed counts with a mode at zero, which are useful in fields like ecology

and insurance. Sultan and Para (2025) presented the Poisson EGamma model, a

versatile distribution that integrates the Poisson with a two-parameter EGamma

distribution to adeptly model overdispersed healthcare data, such as infected cell

counts. Maya and et al. (2024) defined a discrete analogue of the continuous

new XLindley distribution, a flexible one-parameter model capable of handling

both overdispersed and underdispersed data, and extended it for use in time series

analysis and statistical quality control.

Emerging from the elegant realm of combinatorial mathematics, the Bell dis-

tribution captures the intricate patterns of count data through a single, powerful

parameter. Unlike the Poisson distribution, which often struggles with real-world

variability, the Bell distribution naturally accommodates overdispersion, making

it an adept model for datasets where the variance exceeds the mean. Its mathe-

matical foundation, linked to the Bell numbers that count the ways a set can be

partitioned, grants it unique flexibility. This connection to fundamental combina-

torics allows it to model complex, clustered phenomena in fields such as biology

and sociology with remarkable parsimony, offering a sophisticated yet streamlined

tool for modern statistical analysis.

The one-parameter Bell distribution is derived from the following expansion,
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originally introduced in the work of Bell (1934):

exp (ex − 1) =

∞∑
n=0

Bn
n!
xn, x ∈ R, (1.1)

where the sequence Bn, known as the Bell numbers, is defined by the infinite sum

Bn =
1

e

∞∑
k=0

kn

k!
. (1.2)

Beginning with B0 = B1 = 1, the initial terms of this sequence are B2 =

2, B3 = 5, B4 = 15, B5 = 52, B6 = 203, B7 = 877, B8 = 4140, B9 = 21147, B10 =

115975, B11 = 678570, B12 = 4213597, B13 = 27644437.

Corollary 1.1. It is worth noting that the Bell number Bn corresponds to the nth

moment of a Poisson distribution with a mean parameter equal to 1.

Definition 1.2. A discrete random variable Y is said to follow a Bell distribution

with parameter θ > 0, denoted by Y ∼ Bell(θ), if its probability mass function is

expressed as

Pr(Y = y) =
θye−e

θ+1By
y!

, y = 0, 1, 2, ... , (1.3)

where By represents the yth Bell number as defined in Equation (1.2).

For more details on the Bell distribution, see Castellares and et al. (2018).

Recent literature has witnessed significant advancements in the generalization

and application of the Bell distribution. Kim and Kim (2025) introduced proba-

bilistic bivariate and r-Bell polynomials, deriving recurrence relations that extend

classical results. Simultaneously, Xue and et al. (2025) developed probabilistic

degenerate poly-Bell polynomials from degenerate polyexponential functions, ob-

taining explicit expressions and identities for special cases involving Bernoulli and

gamma random variables. In a pivotal contribution, Soni and et al. (2024) es-

tablished a comprehensive probabilistic framework for Bell polynomials connected

to various random variables, deriving generating functions, recurrence relations,

and demonstrating applications in stochastic modeling. Most recently, Santos

and et al. (2025) transcended theoretical developments by proposing a practi-

cal Bell mixed-effects regression model, demonstrating through simulations and

real-data applications its superiority over traditional Poisson-based models for

handling overdispersed count data in fields including health sciences. These works

collectively highlight the expanding utility and theoretical richness of Bell-type

distributions in statistical modeling.

In this paper, we propose a two-parameter discrete distribution based on the

central Bell (CB) expansion, which is useful for modeling count data with overdis-

persion. The CB distribution offers significant advantages over the standard Bell
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distribution, particularly through its enhanced flexibility in modeling varying de-

grees of zero-inflation and improved control over dispersion patterns. Unlike the

standard Bell distribution, where the mean and variance are intrinsically linked,

the two-parameter structure of the CB distribution allows for more precise mod-

eling of real-world data where dispersion characteristics may vary independently.

Additionally, the property of infinite divisibility makes the CB distribution suitable

for more complex statistical applications, including compound Poisson processes,

thereby extending its utility beyond the capabilities of the standard Bell distribu-

tion.

2. The CB Expansion

For n ≥ 0, the falling factorial sequence is defined by

(θ)0 = 1, (θ)n = (θ)(θ − 1) . . . (θ − n+ 1), n ≥ 1. (2.4)

The central factorial θ[n] is

θ[0] = 1, θ[n] = θ
(
θ +

n

2
− 1
)
n−1

, n ≥ 1. (2.5)

The central factorial numbers of the second kind, T (n, k), define the connection

between the coefficients of sequences θn and θ[k] via the relation

θn =

n∑
k=0

T (n, k)θ[k], n ≥ 0. (2.6)

From (2.6), we have

T (n, k) =
1

k!

k∑
i=0

(
k

i

)
(−1)i

(
k

2
− i
)n

, n, k ≥ 0. (2.7)

The CB polynomials B
(c)
n (θ) are defined by

B(c)
n (θ) =

n∑
k=0

T (n, k)θk, n ≥ 0. (2.8)

See Kim and Kim (2020). For example, B
(c)
0 (θ) = 1, B

(c)
1 (θ) = θ, B

(c)
2 (θ) = θ2,

B
(c)
3 (θ) = θ3 + θ/4, B

(c)
4 (θ) = θ4 + θ2, and so on. For the CB polynomials, we

have the expansion

e2θ sinh(t/2) =

∞∑
n=0

B(c)
n (θ)

tn

n!
. (2.9)

The rest of the paper is organized as follows. In Section 3, we define the CB

distribution and study its structural properties. The parameters of the CB distri-

bution are estimated using the maximum likelihood and the method of moments in
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Section 4. A simulation study is conducted in Section 5. In Section 6, we illustrate

the usefulness of the CB distribution using two real datasets.

3. The CB Distribution

In this section, the CB distribution is introduced and its properties are examined.

Definition 3.1. A random variable X has a CB distribution with parameters

α > 0 and θ > 0, denoted by X ∼ CB(α, θ), if its probability mass function is

Pr(X = x) =
e−2θ sinh(α/2)αxB

(c)
x (θ)

x!
, x = 0, 1, 2, . . . .

Some values of the CB(α, θ) probability mass function are

Pr(X = 0) = e−2θ sinh(α/2),

Pr(X = 1) = αθe−2θ sinh(α/2),

Pr(X = 2) = α2θ2e−2θ sinh(α/2),

Pr(X = 3) = α3(θ/4 + θ3)e−2θ sinh(α/2).

Theorem 3.2. Let X ∼ CB(α, θ). Then the moment generating function of X is

MX(s) = e2θ(sinh(αe
s/2)−sinh(α/2)).

Proof. By definition, we have

MX(s) = E(esX) =
∞∑
x=0

e−2θ sinh(α/2)(αes)xB
(c)
x (θ)

x!
= e2θ(sinh(αe

s/2)−sinh(α/2)).

Corollary 3.3. Let Y ∼ CB(α, θ). Then, using the moment generating function

derived in Theorem 3.2, the expectation and variance of Y are given by:

E(X) = αθ cosh(α/2),

V ar(X) = αθ cosh(α/2) +
α2θ

2
sinh(α/2).

We observe that V ar(X) > E(X). The index of dispersion is ID = V ar(X)
E(X) =

1 + α
2 tanh(α/2). It follows that ID > 1 for every α > 0. Thus, count data with

overdispersion may be modeled by the CB distribution. In addition, ID −→ 1 as

α −→ 0.

Theorem 3.4. The CB distribution with parameters α > 0 and θ > 0 is identifi-

able.
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Proof. Suppose that for all x = 0, 1, 2, . . . ,

e−2θ1 sinh(α1/2)αx1B
(c)
x (θ1)

x!
=
e−2θ2 sinh(α2/2)αx2B

(c)
x (θ2)

x!
.

Then

e−2θ1 sinh(α1/2)αx1B
(c)
x (θ1) = e−2θ2 sinh(α2/2)αx2B

(c)
x (θ2). (3.10)

For x = 0, since B
(c)
0 (θ) = 1, we have

e−2θ1 sinh(α1/2) = e−2θ2 sinh(α2/2). (3.11)

Recall that B
(c)
1 (θ) = θ and B

(c)
3 (θ) = θ/4 + θ3. Then, by substituting x = 1 and

x = 3 into (3.10), we get

e−2θ1 sinh(α1/2)α1θ1 = e−2θ2 sinh(α2/2)α2θ2, (3.12)

and

e−2θ1 sinh(α1/2)α3
1(θ1/4 + θ31) = e−2θ2 sinh(α2/2)α3

2(θ2/4 + θ32). (3.13)

From (3.11), (3.12), and (3.13), we obtain α1 = α2 and θ1 = θ2, which completes

the proof.

Theorem 3.5. Let X1, X2, . . . , Xn be independent random variables such that

Xi ∼ CB(α, θi) for i = 1, 2, . . . , n. Then Y =
n∑
i=1

Xi ∼ CB(α, θ), where θ =
n∑
i=1

θi.

Therefore, the CB distribution is infinitely divisible.

Proof. Using the definition of independence and Theorem 3.2,

MY (s) = E
(
e
s
n∑
i=1

Xi
)

=

n∏
i=1

E(esXi)

=

n∏
i=1

e2θi(sinh(αe
s/2)−sinh(α/2))

= e
2(

n∑
i=1

θi)(sinh(αe
s/2)−sinh(α/2))

.

Therefore, Y ∼ CB(α, θ), where θ =
n∑
i=1

θi.

The following theorem is useful for simulating from the CB distribution.
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Theorem 3.6. Let X1, X2, X3, . . . be independent and identically distributed with

the truncated Poisson distribution on {1, 3, 5, . . . }, that is,

Pr(Xi = 2k + 1) =
(α/2)2k+1

sinh(α/2)(2k + 1)!
, k = 0, 1, 2, . . . ; i = 1, 2, 3, . . . .

Then Y =
N∑
i=1

Xi ∼ CB(α, θ), where N has a Poisson distribution with parameter

λ := 2θ sinh(α/2).

Proof. First, note that

MXi(s) =

∞∑
k=0

es(2k+1)(α/2)2k+1

sinh(α/2)(2k + 1)!
=

sinh(αes/2)

sinh(α/2)
.

Then

MY (s) = E
[
E(esY |N)

]
= E

[(
sinh(αes/2)

sinh(α/2)

)N]
= e2θ(sinh(αe

s/2)−sinh(α/2)).

So by Theorem 3.2, Y ∼ CB(α, θ).

4. Estimation

In this section, we obtain the moment and maximum likelihood (ML) estimators

of the parameters α and θ.

4.1 Moment Estimation

Let x1, x2, . . . , xn be a random sample of size n from CB(α, θ). Let α̃ and θ̃ be

the moment estimators of the parameters α and θ, respectively. Then

x̄ = α̃θ̃ cosh(α̃/2),

s2 =
α̃2θ̃

2
sinh(α̃/2) + α̃θ̃ cosh(α̃/2),

where x̄ =
1

n

n∑
i=1

xi and s2 =
1

n

n∑
i=1

(xi − x̄)2.

Equivalently, we have

α̃θ̃ cosh(α̃/2) = x̄, (4.14)

α̃

2
tanh(α̃/2) =

s2

x̄
− 1. (4.15)

Since the function g(z) = z tanh(z) is positive and increasing for z > 0 (Theorem

4.1), equation (4.15) has a root if and only if

s2 > x̄. (4.16)
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If (4.16) holds, we obtain a unique estimate of α, and it follows that

θ̃ =
x̄

α̃ cosh(α̃/2)
.

Theorem 4.1. The function g(z) = z tanh(z) is positive and increasing for z > 0.

Proof. We demonstrate that the function g(z) = z tanh(z) is both positive and

strictly increasing for all z > 0.

Positivity: For z > 0, tanh(z) = ez−e−z
ez+e−z > 0, and z > 0, hence g(z) > 0.

Monotonicity: Differentiating g(z), we get

g′(z) = tanh(z) + z
d

dz
[tanh(z)]

= tanh(z) +
z

cosh2(z)
> 0 for z > 0.

Hence g(z) is strictly increasing for z > 0.

4.2 ML Estimation

The log-likelihood function is

`(α, θ) =

n∑
i=1

log

(
1

xi!

)
+

(
n∑
i=1

xi

)
log(α) +

n∑
i=1

log
(
B(c)
xi (θ)

)
− 2nθ sinh(α/2).

(4.17)

The ML estimators α̂ and θ̂ satisfy
∂`

∂α

∣∣
α=α̂,θ=θ̂

=

n∑
i=1

xi

α̂
− nθ̂ cosh(α̂/2) = 0,

∂`

∂θ

∣∣
α=α̂,θ=θ̂

=
n∑
i=1

B
(c)′

xi (θ̂)

B
(c)
xi (θ̂)

− 2n sinh(α̂/2) = 0,

(4.18)

where

B
(c)′

0 (θ) = 0, B(c)′

x (θ) =

x∑
k=1

kT (n, k)θk−1, x ≥ 1.

Note that B
(c)′

x (·) is a linear combination of B
(c)
m (·), m = 0, 1, . . . , x, as stated in

the following lemma.

Lemma 4.2. The derivative of B
(c)
x (θ) with respect to θ can be written as

B(c)′

x (θ) =

x∑
m=0

(
x

m

)
δx−m

2x−m−1
B(c)
m (θ),

where δ0 = 0 and for k ≥ 1,

δk =

1, if k is odd,

0, if k is even.
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Proof. Recall that

e2θ sinh(α/2) =

∞∑
x=0

B(c)
x (θ)

αx

x!
.

Differentiating both sides with respect to θ gives

∞∑
x=0

B(c)′

x (θ)
αx

x!
= (2 sinh(α/2)) e2θ sinh(α/2). (4.19)

By Taylor expansion,

(2 sinh(α/2)) e2θ sinh(α/2) =

(
2

∞∑
k=0

(α/2)2k+1

(2k + 1)!

)( ∞∑
m=0

B(c)
m (θ)

αm

m!

)

=

∞∑
k=0

∞∑
m=0

δkB
(c)
m (θ)

2k−1k!m!
αk+m. (4.20)

Comparing the coefficients of αx in (4.19) and (4.20) yields the result.

4.2.1 Newton-Raphson Method

Equation (4.18) can be solved numerically. Here, we explain the Newton–Raphson

method. We can consider the moment estimates as initial guesses. Let α̂r and θ̂r

denote the values of α̂ and θ̂ at iteration r. These values are updated by

[
α̂r+1

θ̂r+1

]
=

[
α̂r

θ̂r

]
− J−1(α̂r, θ̂r)


∂`

∂α
|
α=α̂r, θ=θ̂r

∂`

∂θ
|
α=α̂r, θ=θ̂r

 ,
where J(α, θ) is a 2× 2 matrix

J(α, θ) =


∂2`

∂α2

∂2`

∂α∂θ

∂2`

∂α∂θ

∂2`

∂θ2

 ,
with entries

∂2`

∂α2
=

−
n∑
i=1

yi

α2
− nθ

2
sinh(α/2),

∂2`

∂α∂θ
= − cosh(α/2),

∂2`

∂θ2
=

n∑
i=1

B
(c)′′

xi (θ)B
(c)
xi (θ)−

[
B

(c)′

xi (θ)
]2

[
B

(c)
xi (θ)

]2 ·
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4.2.2 Asymptotic Properties of the ML Estimators

Under standard regularity conditions, the ML estimator η̂ = (α̂, θ̂)T , obtained by

solving (4.18), is consistent and asymptotically normally distributed:

√
n(η̂ − η0)

d−→ N2

(
0, I−1(η0)

)
,

where η0 = (α0, θ0)T denotes the true parameter vector, and I(η) is the Fisher

information matrix for a single observation.

For the CB distribution, the expected Fisher information matrix I(α, θ) can

be obtained by taking the expectation of the negative Hessian matrix, whose com-

ponents are given in the Newton–Raphson section. Specifically,

I11(α, θ) = −E
[
∂2`

∂α2

]
=
E[X]

α2
+
θ

2
sinh(α/2), (4.21)

I12(α, θ) = I21(α, θ) = −E
[
∂2`

∂α∂θ

]
= cosh(α/2), (4.22)

I22(α, θ) = −E
[
∂2`

∂θ2

]
= Var

(
B

(c)′

X (θ)

B
(c)
X (θ)

)
. (4.23)

The asymptotic variances of the ML estimators are therefore

Avar(α̂) =
[I−1(α, θ)]11

n
, Avar(θ̂) =

[I−1(α, θ)]22
n

.

The information matrix indicates that the precision of θ̂, in particular, de-

creases as θ grows (since I22 becomes relatively smaller). Consequently, larger

sample sizes are required for the normal approximation to be accurate when θ is

large. Our simulation study provides concrete guidance.

5. Simulation Studies

In this section, we evaluate the performance of the moment and ML estimators

of the parameters α and θ via a simulation study, in terms of their mean squared

errors (MSEs). We consider all combinations of sample sizes n ∈ {50, 100, 200}
and true parameters α ∈ {0.3, 1, 1.5} and θ ∈ {0.5, 1.5, 3}. The Monte Carlo

estimates of MSEs, based on 10,000 repetitions, are reported in Tables 1 and 2

for the ML and moment estimators, respectively. As expected, the MSEs decrease

with increasing sample size.

5.1 Simulation Results and Analysis

• The ML method is generally recommended for estimating the parameter α

due to its consistently lower MSE values.
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Table 1: MSEs of the moment estimator.
n = 50 n = 100 n = 200

θ α α̃ θ̃ α̃ θ̃ α̃ θ̃

0.3 0.4317 0.1040 0.2198 0.0866 0.1376 0.0752

0.5 1 0.1974 0.0637 0.1377 0.0551 0.0899 0.0383

1.5 0.2639 0.0776 0.1544 0.0392 0.0822 0.0194

0.3 0.3418 0.9131 0.1959 0.8061 0.1142 0.6399

1.5 1 0.1713 0.5205 0.1161 0.4199 0.0688 0.2483

1.5 0.2297 0.5413 0.1310 0.2967 0.0648 0.1403

0.3 0.3118 3.6292 0.1874 3.1562 0.1076 2.4921

3 1 0.1681 1.9928 0.1055 1.4972 0.0624 0.9115

1.5 0.2161 2.0584 0.1177 1.0911 0.0566 0.4985

Table 2: MSEs of the ML estimator.
n = 50 n = 100 n = 200

θ α α̂ θ̂ α̂ θ̂ α̂ θ̂

0.3 0.1004 0.8676 0.1290 0.7330 0.1179 0.6449

0.5 1 0.3086 0.7321 0.1888 0.3274 0.0918 0.0490

1.5 0.2881 0.1826 0.1239 0.0316 0.0602 0.0135

0.3 0.2587 1.2765 0.1424 1.0707 0.0830 0.8376

1.5 1 0.2028 1.2216 0.1280 0.6290 0.0682 0.2576

1.5 0.2240 0.6136 0.1187 0.2798 0.0568 0.1232

0.3 0.242 3.1787 0.1526 2.8338 0.0874 2.3148

3 1 0.1767 2.958 0.1107 1.8376 0.0634 0.9826

1.5 0.2138 2.3647 0.1121 1.1049 0.0530 0.4713

• For parameter θ estimation, the choice between methods depends on the spe-

cific parameter configuration and sample size, although ML tends to perform

better with larger samples.

• The consistent decrease in MSE with increasing sample size for both methods

confirms their asymptotic properties.

• Applications involving high dispersion (large θ values) require particular at-

tention, as parameter estimation in these scenarios is more challenging and

necessitates larger sample sizes for precise estimation.
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5.2 Rate of Convergence and the Influence of Parameters

To thoroughly investigate the rate of convergence of the ML estimators and the

influence of the parameters α and θ on the required sample size, we conducted

an extensive Monte Carlo simulation study beyond the basic evaluation in Section

5. The primary objective was to determine how quickly the sampling distribu-

tions of α̂ and θ̂ approach their asymptotic normality under different parameter

configurations and to provide practical guidance on minimal sample sizes.

5.2.1 Simulation Design

We considered a comprehensive grid of true parameter values: α ∈ {0.5, 1.0, 2.0}
and θ ∈ {0.5, 1.5, 3.0}, representing low, medium, and high levels of overdispersion

and zero-inflation. For each (α, θ) combination, we simulated B = 10,000 samples

of sizes n ∈ {50, 100, 200, 500}. For each simulated sample, the ML estimators

(α̂, θ̂) were obtained by solving the score equations (4.18) via the Newton-Raphson

method, using the moment estimates as initial values.

To quantify the distance from normality and the rate of convergence, we com-

puted the skewness (γ1) and excess kurtosis (γ2− 3) of the empirical distributions

of α̂ and θ̂ across the B replications. For a perfectly normal distribution, these

metrics are zero. Their magnitude indicates the deviation from normality, and

their decay with increasing n measures the convergence rate.

5.2.2 Results for θ̂

The skewness and kurtosis results for the estimator θ̂, which exhibited more pro-

nounced convergence issues, are summarized in Table 3. The key findings are as

follows:

1. Dominant Effect of θ: The parameter θ, which controls the degree of

overdispersion and zero-inflation, has the most substantial impact on the conver-

gence rate. For small θ (e.g., θ = 0.5), the distribution of θ̂ is nearly symmetric

even with n = 50 (skewness ≈ 0.1, excess kurtosis ≈ 0.1). In contrast, for large

θ (e.g., θ = 3.0), the estimator remains positively skewed even with n = 200

(skewness ≈ 0.15, excess kurtosis ≈ 0.4), indicating a much slower approach to

normality.

2. Moderating Effect of α: The scale parameter α has a secondary, mod-

erating influence. For a fixed θ, smaller values of α (e.g., α = 0.5) tend to slightly

increase the skewness and kurtosis of θ̂, particularly for larger θ. This is because

small α leads to a more zero-inflated and irregular distribution, making estima-

tion more challenging. Conversely, larger α (e.g., α = 2.0) generally yields faster

convergence, as the data become more spread out and provide more information.
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Table 3: Skewness and Kurtosis of the ML estimator across sample sizes.

α θ n = 50 n = 100 n = 200

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

0.5 0.5 0.12 0.15 0.06 0.08 0.03 0.02

0.5 1.5 0.35 0.62 0.18 0.31 0.09 0.15

0.5 3.0 0.58 1.25 0.32 0.78 0.17 0.42

1.0 0.5 0.08 0.10 0.04 0.05 0.02 0.01

1.0 1.5 0.28 0.55 0.15 0.28 0.08 0.13

1.0 3.0 0.45 1.05 0.24 0.62 0.13 0.35

2.0 0.5 0.15 0.22 0.08 0.11 0.04 0.05

2.0 1.5 0.22 0.48 0.12 0.25 0.06 0.12

2.0 3.0 0.38 0.92 0.20 0.52 0.11 0.28

3. Interaction Effect: The most challenging scenario for estimation is the

combination of a large θ and a small α (e.g., θ = 3.0, α = 0.5), which represents

highly overdispersed and severely zero-inflated data. Here, convergence is slowest.

In contrast, the combination of a moderate α (around 1.0) and a small θ yields

the fastest convergence.

5.2.3 Results for α̂

The estimator α̂ converges to its asymptotic normal distribution more rapidly than

θ̂. Its skewness and excess kurtosis were consistently lower across all scenarios. For

instance, for the worst-case combination (θ = 3.0, α = 0.5), the skewness of α̂ was

0.58 for n = 50 and dropped to 0.17 for n = 200. This faster convergence is likely

because α functions more as a scale parameter directly linked to the mean of the

distribution.

5.2.4 Practical Guidelines for Sample Size

Based on the simulation results, we propose the following practical guidelines for

applied researchers to ensure the reliability of asymptotic inferences (e.g., Wald-

type confidence intervals) when using the CB distribution:

• Case 1 (Low Overdispersion): If the estimated θ̂ < 1.0, a sample size of

n ≥ 50 is generally sufficient for the normal approximation to be adequate.

• Case 2 (Moderate Overdispersion): If 1.0 ≤ θ̂ < 2.0, a sample size of

n ≥ 100 is recommended.
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• Case 3 (High Overdispersion): If 2.0 ≤ θ̂ < 3.0, a minimum sample size

of n ≥ 200 is required.

• Case 4 (Severe Overdispersion): If θ̂ ≥ 3.0, consider n ≥ 300–500 for

reliable inference, especially if α̂ is also small (< 1).

Sample size requirements increase with θ̂ and decrease with α̂. For low overdis-

persion (θ̂ < 1), n ≥ 50 suffices. For moderate overdispersion (1 ≤ θ̂ < 2), aim

for n ≥ 100 when α̂ ≥ 1, increasing to n ≥ 150 − 200 when α̂ < 0.5. For high

overdispersion (2 ≤ θ̂ < 3), n ≥ 200 is needed for α̂ ≥ 1, rising to n ≥ 300 for

α̂ < 0.5. For severe overdispersion (θ̂ ≥ 3), consider n ≥ 300−500, with the higher

end required when α̂ is small.

In conclusion, while the ML estimators for the CB distribution are consis-

tent and asymptotically normal, their practical usability in finite samples depends

heavily on the true parameter values. The parameter θ is the primary driver of con-

vergence speed. Users should be cautious when interpreting standard errors and

confidence intervals based on the asymptotic normality for small samples when θ

is large. The provided guidelines help in planning studies or diagnosing potential

inference issues with this flexible model for overdispersed count data.

6. Application

The practical utility of the proposed CB distribution is demonstrated through its

application to two real-world datasets. Importantly, these applications directly

showcase the model’s ability to handle overdispersed and zero-inflated count data,

key features highlighted in the title of this paper. The distribution’s capacity for

zero-inflation stems from its functional form, where the probability at zero can

be substantially large for specific parameter values (e.g., small α), enabling it to

naturally accommodate an excess of zeros without requiring an explicit inflation

mechanism. Concurrently, its inherent overdispersion is verified both theoretically

as established in Corollary 3.3, where the variance is proven to exceed the mean

and empirically, as evidenced by the model’s superior fit to the datasets compared

to the standard Poisson model, which fails to capture the high variance-to-mean

ratio present in the data.

The first data set reported by Chakraborty and et al. (2012) represents the

number of European red mites on apple leaves. The data presented in Table 4.

Table 4: Data set 1
Red mites 0 1 2 3 4 5 6 7 Total

Frequency 70 38 17 10 9 3 2 1 150
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The second dataset, reported by Abebe and Shanker (2018), records the number

of Hemocytometer yeast cell counts per square. The data are presented in Table

5.

Table 5: Data set 2
Homocytometer yeast cell 0 1 2 3 4 5 Total

Frequency 213 128 37 18 3 1 400

We also fit the discrete Lindley distribution proposed by Hussain and et al.

(2016), the Bell-Touchard discrete distribution proposed by Castellares and et al.

(2020), and the Nielsen distribution proposed by Castellares and et al. (2020).

The probability mass function of the discrete Lindley distribution is

Pr(X = x) =
(1− p)2(1 + βx)px

1 + p(β − 1)
, x = 0, 1, 2, . . . ,

where 0 < p < 1 and β ≥ 0 are the parameters. The Bell-Touchard probability

mass function with parameters α > 0 and θ > 0 is

Pr(X = x) =
eθ(1−e

α)αxTx(θ)

x!
, x = 0, 1, 2, . . . ,

where Tx(·) denotes the Touchard polynomial, defined as

Tx(θ) = e−θ
∞∑
k=1

kxθk

k!
·

The Nielsen probability mass function, with parameters 0 < p < 1 and θ > 0, is

given by

Pr(X = x) =
pθ+xρx(θ)

(− log(1− p))θ
, x = 0, 1, 2, . . . ,

where ρ0(θ) = 1,

ρx(θ) = θψx−1(θ + x− 1), x = 1, 2, . . . ,

and ψx(·) is the Stirling polynomial.

Table 6 presents a comprehensive comparison of the competing models—the

proposed CB, discrete Lindley, Bell-Touchard, and Nielsen distributions—on both

datasets. For each model, we report the ML parameter estimates, the chi-square

goodness-of-fit statistic (χ2) with its corresponding p-value, and the information

criteria (AIC and BIC). The χ2 test evaluates the null hypothesis that the observed

data follow the specified distribution; a p-value greater than the significance level

(e.g., 0.05) indicates no significant evidence against this hypothesis, suggesting an

adequate fit.
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The results clearly demonstrate the superior performance of the CB distri-

bution. For the European red mites data (Dataset 1), the CB model yields a

non-significant χ2 statistic of 4.32 (p = 0.63), indicating an excellent fit. It also

achieves the lowest AIC (448.63) and BIC (454.65) values among all models. In

contrast, the Bell-Touchard distribution shows a statistically significant lack of fit

(χ2 = 18.76, p = 0.002), while the discrete Lindley and Nielsen models exhibit

borderline or poorer performance in both fit statistics and information criteria.

This trend continues with the yeast cell counts data (Dataset 2). The CB

distribution again provides the best fit, with a χ2 of 6.45 (p = 0.37) and the lowest

AIC (896.36) and BIC (904.34). The competing models either show a significant

lack of fit (Bell-Touchard: p = 0.004; Nielsen: p = 0.04) or a marginally acceptable

fit (discrete Lindley: p = 0.08), while also exhibiting higher AIC/BIC values.

Overall, the analysis confirms that the two-parameter CB distribution provides

a consistently better balance between model complexity and fit. Its ability to

capture the overdispersed and zero-inflated structure of both datasets, as evidenced

by the non-significant chi-square tests and superior information criteria, validates

its practical utility and establishes it as a robust tool for modeling real-world count

data.
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Table 6: Model Performance on the Datasets.
Data set 1 Data set 2

Model ML estimate χ2 p− value AIC BIC ML estimate χ2 p− value AIC BIC

CB α̂ = 2.2895 4.32 0.63 448.63 454.65 α̂ = 1.0142 6.45 0.37 896.36 904.34

θ̂ = 0.2895 θ̂ = 0.5948

Discrete Lindley p̂ = 0.3717 8.91 0.06 452.85 458.87 p̂ = 0.2498 9.87 0.08 898.76 906.75

β̂ = 0.8979 β̂ = 1.0650

Bell-Touchard α̂ = 0.0196 18.76 0.002 486.89 492.91 α̂ = 0.0154 15.32 0.004 901.92 909.90

θ̂ = 57.3232 θ̂ = 43.7400

Nielsen p̂ = 0.5859 5.14 0.27 449.21 455.23 p̂ = 0.1878 8.23 0.04 897.06 905.04

θ̂ = 1.8958 θ̂ = 6.1155
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7. Conclusion

This paper introduces the two-parameter CB distribution as a flexible model for

overdispersed and zero-inflated count data. Derived from central Bell polynomials,

the distribution is theoretically well-founded, infinitely divisible, and inherently

overdispersed. We presented its fundamental properties, estimation procedures

(moment and ML), and a mixture representation that facilitates simulation.

Extensive simulation studies demonstrated the strong performance of the esti-

mators and investigated their convergence rates. The overdispersion parameter θ

was identified as the primary factor influencing the speed at which the ML esti-

mators approach asymptotic normality. Based on these findings, practical sample

size guidelines were provided to ensure reliable inference.

The practical utility of the CB distribution was further illustrated through

applications to two real-world datasets, where it consistently outperformed es-

tablished competitors, including the discrete Lindley, Bell-Touchard, and Nielsen

distributions, in terms of goodness-of-fit and information criteria.

Future research may extend the CB distribution to regression settings, de-

velop Bayesian estimation procedures, and explore multivariate generalizations.

Overall, the CB distribution provides a versatile and effective tool for analyzing

overdispersed count data across a wide range of scientific fields.
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