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1. Introduction

The linear mixed measurement error model can be expressed as:

y = Zβ + Ub+ ε,

X = Z + ∆,
(1)

where y = (y′1, y
′
2, ..., y

′
l)
′ is an n× 1 vector of observations, Z = (Z ′1, Z

′
2, ..., Z

′
l)
′ is

an n× p matrix of regressors for the fixed effects, β is a p× 1 parameter vector of

fixed effects, and U = [U1|U2|...|Ul] is an n×q known design matrix of the random

effect factor, with Ui being n × qi, such that
∑l
i=1 qi = q. b′ = (b′1, b

′
2, ..., b

′
l) is a

q × 1 unobservable vector of random effects from N(0, σ2Σ), where Σ is a block

diagonal matrix with the ith block being γiIqi for γi = σ2
i /σ

2.

Furthermore, ε = (ε′1, ε
′
2, ..., ε

′
l)
′ is an n × 1 unobservable vector of random

errors from N(0, σ2In), and X is the observed version of Z with measurement

error ∆, where ∆ is an n × p random matrix from MN(0, In ⊗ Λ). Here, Λ is a

p × p matrix of known values with nonnegative diagonal elements Fuller (1987).

Additionally, it is assumed that b, ε, and ∆ are mutually independent.

Under model (1), it follows that y ∼MN(Zβ, σ2V ) with V = In +UΣU ′, and

b|y ∼ N(ΣU ′V −1(y−Zβ), σ2ΣT ), where T = (Iq −U ′V −1UΣ) = (Iq +U ′UΣ)−1.

The corrected score estimates (CSE) of β and σ2 are given by

β̂ =
[
X ′V −1X − tr(V −1)Λ

]−1
X ′V −1y, σ̂2 =

(y −Xβ̂)′V −1(y −Xβ̂)− tr(V −1)β̂′Λβ̂

n
,

where

σ̂2
i =

b̂′ib̂i − tr(D̂′iD̂i)β̂
′Λβ̂

qi − tr(Tii)
, i = 1, ..., l,

with D̂i = γ̂iU
′
iV
−1 =

σ̂2
i

σ̂2U
′
iV
−1, and b̂ = ΣU ′V −1(y − Xβ̂) is the predicted

random effects. Here, Tij denotes the ijth block of matrix T Zhong et al. (2002);

Zare et al. (2012).

The presence of multicollinearity in linear regression models leads to higher

variance and unstable parameter estimates when using ordinary least squares. To

address this, several biased estimators have been developed, including the Stein

estimator Stein (1956), ridge regression Hoerl and Kennard (1970), and the Liu

estimator Liu (1993).

To overcome multicollinearity, Liu and Hu (2013) introduced methods, and

Ozkale and Can (2017) proposed the ridge estimator and ridge predictor in linear

mixed models when fixed-effect variables have no measurement error. Ganjeali-

vand et al. (2021) examined stochastic restricted and unrestricted two-parameter

estimators for fixed and random effects in linear mixed measurement error mod-

els. Ghapani (2022) focused on stochastic restricted Liu estimation for param-
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eters in LMME models with multicollinearity. Yavarizadeh et al. (2022) intro-

duced ridge estimation in LMME models with stochastic linear mixed restrictions.

Ganjealivand and Ghapani (2024) presented a weighted two-parameter estimator

for predicting fixed and random effects in LMME models using additional linear

stochastic constraints.

Since influential observations and multicollinearity often co-occur in LMME

models, it is important to consider them in data analysis. Various methods, in-

cluding residuals and case deletion models (CDM), have been proposed for this

purpose. Diagnostic measures for linear mixed models are discussed in Christensen

et al. (1992); Banerjee and Frees (1997); Zhong and Wei (1999); Haslett and

Dillane (2004); Zewotir and Galpin (2005); Li et al. (2009). Fung et al.

(2003) studied estimation and influence diagnostics in LMME models, while Zare

and Rasekh (2012) introduced case deletion and mean-shift outlier models using

Nakamura (1990) corrected likelihood. Zare and Rasekh (2014) derived residuals

and leverage in LMME models. Maksaei et al. (2023) focused on ridge-based

diagnostic methods, and Borhani et al. (2023, 2024) investigated influential and

outlier detection with Liu’s corrected likelihood estimator under multicollinearity.

To our knowledge, little attention has been given to leverage and influence diag-

nostics for RRE outcomes in LMME models. This paper evaluates the influence

of observations on RREs of fixed effects and predicted random effects.

The remainder of this article is organized as follows. Section 2 discusses pa-

rameter estimation in LMME models via the stochastic restricted ridge method

and examines asymptotic properties. Section 3 introduces influence measures for

detecting influential observations in ridge LMME models with stochastic linear re-

strictions and employs a parametric bootstrap to generate empirical distributions

of test statistics. Section 4 illustrates the proposed diagnostics through a numeri-

cal example, followed by simulation results in Section 5. Concluding remarks are

presented in Section 6.

2. Stochastic Restricted Ridge Estimator

In many applications, additional or prior information about the unknown param-

eter vector β is available. This information may come from theoretical considera-

tions or previous studies. Suppose r is an m × 1 observable random vector, R is

a known m × p matrix of rank m < p, and e is an m × 1 vector of unobservable

random errors from N(0, σ2W ), where W is a positive definite matrix of known

elements. In addition to model (1), consider the stochastic linear restrictions:

r = Rβ + e. (2)
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Assume that e is stochastically independent of ε and ∆. Combining the informa-

tion in (2) with model (1) leads to the following mixed model:

yr = Zrβ + Urb+ εr, (3)

or [
y

r

]
=

[
Z

R

]
β +

[
U

0

]
b+

[
ε

e

]

where b and yr are jointly distributed as

[
b

yr

]
∼ N(

[
0

Zrβ

]
,

[
σ2Σ σ2ΣU ′r

σ2UrΣ σ2Vr

]
)

where Vr =

[
V 0

0 W

]
. Then the conditional distribution of b given yr is b| yr ∼

N(ΣU ′rVr
−1(yr − Zrβ), σ2ΣTr) , where Tr = Iq − U ′rV −1

r UrΣ = (Iq + U ′rUrΣ)−1 .

According to Ghapani (2022) the corrected stochastic restricted estimates of β ,

σ2 and the predictor of b are given by

β̂r = A−1
r (X ′V −1y +R′W−1r)

σ̂2
r =

(y−Xβ̂r)′V −1(y−Xβ̂r)+(r−Rβ̂r)′W−1(r−Rβ̂r)−tr(V −1)β̂′rΛβ̂r

(n+m)

b̂r = ΣU ′V −1(y −Xβ̂r)
,

where Ar = X ′V −1X+R′W−1R− tr(V −1)Λ. To address the multicollinearity

problem, the ridge estimator is employed in LMME models. For this purpose,

consider the stochastic linear restriction

0 =
√
kIpβ + ϕ, ϕ ∼ N(0, σ2Ip),

where k > 0 is the ridge biasing parameter.

To incorporate the ridge restriction into the parameter estimation, the log-

likelihood function and the corrected log-likelihood function for the joint distribu-

tion of yr and b are defined as

l(θ;Z, y, r) = − 1
2

{
(n+ q +m) log(2πσ2) + log |Σ|

}
− 1

2σ2

[
(y − Zβ − Ub)′(y − Zβ − Ub) + b′Σ−1b

]
− 1

2σ2

[
(r −Rβ)′W−1(r −Rβ)

]
− kβ′β

2σ2 ,

l∗(θ;X, y, r) = − 1
2

{
(n+ q +m) log(2πσ2) + log |Σ|

}
− 1

2σ2

[
(y −Xβ − Ub)′(y −Xβ − Ub)− tr(V −1)β′Λβ + b′Σ−1b

]
− 1

2σ2

[
(r −Rβ)′W−1(r −Rβ)

]
− kβ′β

2σ2 ,
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where θ = (β, b, γ, k) and γ′ = (γ1, γ2, ..., γl). The l∗(θ;X, y, r) have the fol-

lowing properties (Nakamura, 1990):

E∗
[
∂l∗(θ;X,y,r)

∂β

]
= ∂l(θ;Z,y,r)

∂β and E∗
[
∂l∗(θ;X,y,r)

∂b

]
= ∂l(θ;Z,y,r)

∂b

where E∗ denotes the conditional expectation with respect to X given y. The

corrected score restricted ridge estimates of β and b are obtained by differentiating

l∗(θ;X, y, r) with respect to β and b, respectively, as follows:

β̂rk = A−1
rk

(
X ′V −1y +R′W−1r

)
,

b̂rk = ΣU ′V −1(y −Xβ̂rk),
(4)

where Ark = Ar + kIp.

The marginal corrected log-likelihood function in LMME models with the ridge

condition can be written as:

l∗(θ′;X, y, r) = −n+m
2 log(2πσ2)− 1

2 log |V |
− 1

2σ2

[
(y −Xβ)′V −1(y −Xβ)− tr(V −1)β′Λβ

]
− 1

2σ2

[
(r −Rβ)′W−1(r −Rβ)

]
− kβ′β

2σ2 ,

where θ′ = (σ2, γ, k).

Let l1(θ′;Z, y, r) = l(β̃(γ), b̃(γ), θ′;Z, y, r), where β̃(γ) and b̃(γ) are the maxi-

mum likelihood estimates of β and b. Also, define l∗1(θ′;X, y, r) = l∗(β̂(γ), b̂(γ), θ′;X, y, r),

where β̂(γ) and b̂(γ) are the corrected restricted ridge likelihood estimates of β

and b.

The corrected log-likelihood l∗(θ′;X, y, r) should satisfy

E∗
[
l∗1(θ′;X,y,r)

∂σ2

]
= ∂l1(θ′;Z,y,r)

∂σ2 and E∗
[
l∗1(θ′;X,y,r)

∂γi

]
= ∂l1(θ′;Z,y,r)

∂γi
.

By solving the equation ∂l∗(θ′;X, y, r)
/
∂σ2 = 0 , the corrected restricted ridge

estimator of σ2 is given by

σ̂2
rk = 1

n+m

[
(y −Xβ̂rk)′V −1(y −Xβ̂rk)− tr(V −1)β̂′rkΛβ̂rk

+ (r −Rβ̂rk)′W−1(r −Rβ̂rk) + kβ̂′rkβ̂rk

] .

If the elements of γi are unknown, the RRE of the unknown parameters are sub-

stituted back into Σ to obtain β̂rk, σ̂2
rk, and b̂rk. According to Zare et al. (2012),

for the estimation of the γi’s, the corrected score estimates of σ2
rk1, . . . , σ

2
rkl are

used, as

σ̂2
rki =

b̂rkib̂rki−tr(D̂′rkiD̂rki)β̂
′
rkΛβ̂rk

[qi−tr(Tii)]
; i = 1, ..., l with D̂rki = γ̂rkiU

′
iV
−1 =

σ̂2
rki

σ̂2
rk
U ′iV

−1.

2.1 Asymptotic properties of restricted ridge estimator

To investigate the asymptotic behavior of the estimators, the theory of asymptotic

approximation for large samples is used to study their asymptotic distribution. It
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is assumed that the parameter β is identifiable, and as n tends to infinity, the

limits

n−1(Z ′V −1Z + R′W−1R) and n−1(Z ′V −1Z + R′W−1R + kIp) exist and E

denotes the global expectation taken at the true value .

Theorem 2.1. The asymptotic distribution of
√
n(β̂rk−GrG−1

rk β) is normal with

mean vector zero and covariance matrix AV ar(β̂rk) = G−1
rk (B+σ2Gr)G

−1
rk , where

B =
[
σ2tr(V −1) + β′Z ′V −2Zβ

]
Λ , Grk = Z ′V −1Z + R′W−1R + kIp and Gr =

Grk(k=0).

Proof. Let ξ = n−
1
2 (X ′V −1y+R′W−1r) , so we obtain the asymptotic properties

of ξ . It follows from E(X ′V −1y + R′W−1r) = (Z ′V −1Z + R′W−1R)β , that

E(ξ) = n−
1
2Grβ . The variance of ξ can be obtained by

V ar(ξ) = E [V ar(ξ |y )] + V ar [E(ξ |y )]

= n−1E(y′V −2yΛ) + n−1V ar(Z ′V −1y +R′W−1r),

since, E(y′V −2y) = σ2tr(V −1) + β′Z ′V −2Zβ and V ar(Z ′V −1y +R′W−1r) =

σ2Gr , therefore, V ar(ξ) = n−1(B + σ2Gr). Also, since the

E(X ′V −1X) = Z ′V −1Z + tr(V −1)Λ

, by Fung et al. (2003), can be written, X ′V −1X = Z ′V −1Z+tr(V −1)Λ+Op(n
1
2 ).

Then,

n−1Ark = n−1(Z ′V −1Z +R′W−1R+ kIp) +Op(n
− 1

2 ),

so, it follows from β̂rk

√
nβ̂rk=

[
n−1Ark +Op(n

− 1
2 )
]−1

n−
1
2 (X ′V −1y +R′W−1r)

=
[
Ip +Op(n

− 1
2 )
]−1

(n−1Grk)−1ξ =
[
Ip +Op(n

− 1
2 )
]

(n−1Grk)−1ξ,

where
[
Ip +Op(n

− 1
2 )
]−1

= Ip+Op(n
− 1

2 ) is obtained from Taylor series expansion.

Since the limit of C = n−1Gwrk exists, then can be written

√
nβ̂rk = C−1ξ +Op(n

− 1
2 ),

Consequently, it is asymptotically concluded that

√
n(β̂rk −G−1

rk Grβ) = C−1 [ξ − E(ξ)] +Op(n
− 1

2 )

that
√
n(β̂rk − G−1

rk Grβ) is asymptotically normal with mean zero. Further-

more, It can be concluded that
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AV ar(
√
nβ̂rk) = C−1V ar(ξ)C−1 . Thus AV ar(β̂rk) = G−1

rk (B + σ2Gr)G
−1
rk ,

this completes the proof of Theorem 2.1.

Corollary 2.2. β̂ has an asymptotically normal distribution with mean AE(β̂) =

β and covariance matrix AV ar(β̂) = (Z ′V −1Z)−1(B + σ2Z ′V −1Z)(Z ′V −1Z)−1 .

Corollary 2.3. β̂r is asymptotically normally distribution with mean E(β̂r) = β

and AV ar(β̂r) = G−1
r (B + σ2Gr)G

−1
r .

Corollary 2.4. β̂k is asymptotically normally distribution with mean E(β̂k) =

G−1
k Gβ and AV ar(β̂k) = G−1

k (B + σ2G)G−1
k ,where Gk = Grk(R=0) and G =

Gk(k=0).

2.2 Mean Square Error Matrix Comparisons

One of the criteria used to evaluate the performance of estimators is the mean

squared error (MSE) matrix criterion. The mean-square error matrix (MSEM) for

any estimator β̂ of β is defined as

MSEM(β̂) = Var(β̂) + Bias(β̂) Bias(β̂)′,

where Bias(β̂) denotes the bias vector.

Another criterion for evaluating an estimator is the MSE value, which is ob-

tained as follows:

MSE(β̂) = tr
[
MSEM(β̂)

]
= tr

[
V ar(β̂)

]
+Bias(β̂)′Bias(β̂)

Definition 2.5. When two estimators β̂1 and β̂2 are given, the estimator β̂2 is said

to superior to in the MSEM sense if and only if ∆ = MSEM(β̂1)−MSEM(β̂2)

∆ ≥ 0 . If ∆ is positive definite (p.d.) matrix, β̂2 is said to be strongly superior

to β̂1 , i.e. ∆ > 0.

The asymptotic MSEM of the estimators β̂ ,β̂k , β̂r and β̂rk obtained as follows:

MSEM(β̂) = G−1(B + σ2G)G−1

,

MSEM(β̂k) = G−1
k (B + σ2G)G−1

k + b1b
′
1

MSEM(β̂r) = G−1
r (B + σ2Gr)G

−1
r

MSEM(β̂rk) = G−1
rk (B + σ2Gr)G

−1
rk + b2b

′
2

where, b1 = −kG−1
k β and b2 = −kG−1

rk β.
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3. Influence Measures in restricted ridge estima-

tor

Sometimes, a small subset of data exerts a disproportionate influence on the model

coefficients and properties. Therefore, the general objective is to account for in-

fluential points in data analysis. Various methods exist to identify these points.

In the following subsections, some of these methods are presented.

3.1 Residuals

Model (2) can be written as

y = Xβ + Ub+ v,

where v = ε − ∆β and vi is the ith element of the vector v. Using the RR

estimators, the conditional residuals are given by

v̂rk = y −Xβ̂rk − Ub̂rk = V −1(y −Xβ̂rk)

= (V −1 − V −1XA−1
rk X

′V −1)y + V −1R′W−1r

= Py + V −1XA−1
rk R

′W−1r,

where C = V −1 =

[
cii c′i(i)

ci(i) V −1
[i] + ci(i)c

′
i(i)

/
cii

]
, c′i(i) denotes the ith row of

V −1 with the ith element removed and P = V −1 − V −1XA−1
rk X

′V −1. The ith

standardized residual is ti = v̂rki
/√

v̂′rkv̂rk and v̂rki = yi − x′iβ̂rki − u′ib̂rki is the

ith element of the vector of v̂rk. Based on Zare and Rasekh (2014) the asymptotic

distribution of t∗2i =
(n−1)t2i

1−t2i
is Fisher‘s distribution with 1 and n − 1 degree of

freedom. The ith observation may be considered an outlier if t∗2i > F (1, n− 1, α),

where F (1, n − 1, α) denotes the upper percentile of the Fisher distribution with

1 and n− 1 degrees of freedom. The vector of fitted values is

ŷ = Xβ̂rk + Ub̂rk = y − V −1y + V −1XA−1
rk X

′
rV
−1
r yr

= (In − V −1 + V −1XA−1
rk X

′V −1)y + V −1XA−1
rk R

′W−1r

= Hy + V −1XA−1
rk R

′W−1r

,

where, H = In − P.

3.2 Studentized residuals

Since the residuals have different variances, they are not directly comparable.

Accordingly, studentized residuals are used as a more appropriate criterion for
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detecting outliers. The ith studentized residual of the model is defined as:

srki =
v̂rki

σ̂v
√
pii
,

where

σ̂2
v = σ̂2

rk + β̂′rkΛβ̂rk,

and pii is the ith diagonal element of P . Studentized residuals are more effective

than standardized residuals for detecting outlying observations. If an observation

has a large s2
rki, it is considered an outlier.

3.3 Generalized Leverage

Following Wei et al. (1998), the generalized leverage matrix for the fixed effects

in LMME models with the RR estimator is defined as the partial derivative of the

marginal fitted values with respect to the response values, i.e.,

GL(β̂rk) =
∂Xβ̂rk
∂y′

= XA−1
rk X

′V −1.

Therefore, the generalized leverage for the ith observation is

GLii(β̂rk) = x′iA
−1
rk X

′ci,

where c′i is the ith row of the matrix V −1. Based on Hoaglin and Welsch (1978),

when

GLii(β̂rk) >
3× tr(GL(β̂rk))

n
,

the ith observation is considered to have high leverage on the fixed effects.

Since in linear mixed models one observation can affect both the estimation of

fixed effects and the predicted values of random effects, it is possible to evaluate

the joint effect of each observation on both. The generalized leverage matrix in

LMME models with RR estimation of fixed and random effects is defined as

GL(β̂rk, b̂rk) =
∂ŷ

∂y′
= H.

The ith diagonal element of H,

hii = 1− cii + c′iXA
−1
rk X

′ci,

where cii denotes the ith diagonal element of V −1, represents the leverage of the

response value yi on the corresponding fitted value ŷi. According to Hoaglin and

Welsch (1978), the ith observation is said to have high leverage on both β and b

if

hii >
3× tr(H)

n
.
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Additionally, based on Wei et al. (1998), the generalized leverage matrix for

the random effects with ridge estimation in LMME models is defined as

GL(b̃rk) = In − V −1.

As before, the ith observation is said to have high leverage on b if

GLii(b̂rk) >
3× tr(GL(b̂rk))

n
.

3.4 Case Deletion Diagnostics

The aim of analyzing influential observations is to evaluate the impact of the

ith observation on the estimation of parameters. There are different approaches

to assess the influence of perturbations in a dataset and in the model given the

estimated parameters. Case-deletion diagnostics is an example of global influence

analysis, which assesses the effect of an observation by completely removing it.

The matrices are rearranged so that the ith deleted case is placed in the first row.

Therefore,

y =

[
yi

y(i)

]
,X=

[
x′i

X(i)

]
, Z=

[
z′i

Z(i)

]
and U=

[
ui

U(i)

]
.

The restricted ridge case deletion model with the ith observation deleted is defined

as
y(i) = Z(i)β + U(i)b+ ε(i), X(i) = Z(i) + ∆(i), i = 1, 2, ...n., with

r = Rβ + eand0 =
√
kIpβ + e.

(5)

The corrected log-likelihood function joint of y(i) and b and the marginal corrected

log-likelihood function of y(i), respectively are define as

l∗i (θ;X, y, r) = − 1
2

{
(n+ q +m− 1) log(2πσ2) + log |Σ|

}
− 1

2σ2

[
(y(i) −X(i)β − U(i)b)

′(y(i) −X(i)β − U(i)b)− tr(V −1
[i] )β′Λβ + b′Σ−1b

]
− 1

2σ2

[
(r −Rβ)′W−1(r −Rβ)

]
− kβ′β

2σ2 ,

l∗i (θ
′;X, y, r) = −n+m−1

2 log(2πσ2)− 1
2 log

∣∣V[i]

∣∣
− 1

2σ2

[
(y(i) −X(i)β)′V −1

[i] (y(i) −X(i)β)− tr(V −1
[i] )β′Λβ

]
− 1

2σ2

[
(r −Rβ)′W−1(r −Rβ)

]
− kβ′β

2σ2 ,

The corrected score estimates of β and b will be obtained with differentiating of

l∗i (β, k;X, y, b) with respect to β and b . Then we have

∂l∗i (β,k;X,y,b)
∂β = 0

Ark(i)β̂rk(i) +X ′(i)U(i)b̃rk(i) = X ′(i)y(i) +R′W−1r

where, Ark(i) = (X ′(i)X(i) +R′W−1R− tr(V −1
[i] )Λ + kIp),
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∂l∗i (β, k;X, y, b)

∂b
= 0

U ′(i)y(i) − U ′(i)X(i)β̂rk(i) − U ′(i)U(i)b̂rk(i) − Σ−1b̂rk(i) = 0

b̂rk(i) = (U ′(i)U(i) + Σ−1)−1U ′(i)(y(i) −X(i)β̂rk(i)),
(6)

substituting b̂k(i) in to the first equation of (6) gives

Ark(i)β̂rk(i) +X ′(i)U(i)(U
′
(i)U(i) + Σ−1)−1U ′(i)

[
y(i) −X(i)β̂rk(i)

]
= X ′(i)y(i),

using V −1
[i] = (In−1 + U(i)ΣU

′
(i))
−1 = In−1 − U(i)(U

′
(i)U(i) + Σ−1)−1U ′(i) and

(U ′(i)U(i) + Σ−1)−1U ′(i) = ΣU ′(i)V
−1
[i] ,

we obtain

β̂rk(i) = A−1
rk(i)

(X ′(i)V
−1
[i] y(i) +R′W−1r)

b̂rk(i) = ΣU ′(i)V
−1
[i] (y(i) −X(i)β̂rk(i))

Taking the differential of l∗i (σ
2, k;X, y) with respect to σ2 , it follows that

(n+m− 1)σ̂2
rk(i) =

[
(y(i) −X(i)β̂rk(i))

′V −1
[i] (y(i) −X(i)β̂rk(i)) − tr(V −1

[i] )β̂′rk(i)Λβ̂rk(i)

+ (r −Rβ̂rk(i))
′W−1(r −Rβ̂rk(i)) + kβ̂′rk(i)β̂rk(i)

]
Theorem 3.1. For model (5), the following results are obtained:

β̂rk(i) = β̂rk −A−1
rk(i)X

′ci
v̂rki
pii

+Op(n
−1),

σ̂2
rk(i) =

nσ̂2
rk − (v̂2

rki

/
pii)

n+m− 1
+Op(n

−1),

b̂rk(i) = ΣU ′(i)V
−1
[i]

[
y(i) −X(i)β̂rk(i)

]
= b̂rk − ΣU ′pi

v̂rki
pii

where, ci
′ and p′i are ith rows of V −1 and P , respectively. Proof. Given in

Appendix.

3.5 Distance Measure: Cook’s distance and Likelihood dis-

tance

3.5.1 Cook’s distance for fixed effects

To assess changes in the estimated parameter vector, Cook’s distance, based on

Cook (1977), for the deletion of the ith observation in LMME models with ridge

estimation is defined as



106 F. Ghapani

CDi(β) = (β̂rk − β̂rk(i))
′M(β̂rk − β̂rk(i))

where M = σ̂−2
rk Ark. Large values of CDi(β) indicate that the ith observation has

a substantial effect on the full-sample estimate. Therefore, it is concluded that:

CDi(β) = σ̂−2
rk c
′
iXA

−1
rk X

′ci
v̂2rki

p2ii
+Op(n

−1)

= σ̂−2
rk

(cii−pii)v̂2rki

p2ii
+Op(n

−1)

3.5.2 Cook’s distance for random effects

A convenient measure of influence for random effects in LMME models with ridge

estimation is based on the difference between two estimators: one that includes

the ith observation in the data set, and the other that excludes it. The Cook’s

distance for random effects is defined as

CDi(b) = (b̂rk − b̂rk(i))
′G(b̂rk − b̂rk(i))

where, G = σ̂−2
rk (U ′U + Σ−1).

CDi(b) = (ΣU ′pi
v̂rki

pii
)′σ̂−2

k (U ′U + Σ−1)(ΣU ′pi
v̂rki

pii
)

= p′iUΣ(U ′U + Σ−1)ΣU ′pi
v̂2rki

σ̂2
rkp

2
ii

= p′iUΣU ′(UΣU ′ + In)pi
v̂2rki

σ̂2
rkp

2
ii
.

Note that V = In + UΣU ′ , then it can written

CDi(b) = p′i(V − In)V pi
σ̂2
vs

2
rki

σ̂2
rkpii

= p′i(V − In)V pi(
σ̂2
rk+β̂′rkΛβ̂rk

σ̂2
rk

)
s2rki

pii

= p′i(V − In)V pi(1 +
β̂′rkΛβ̂rk

σ̂2
rk

)
s2rki

pii
.

3.5.3 Conditional Cook’s distance

To investigate the influence of observations on the predicted values, we define the

conditional Cook’s distance, following Tan et al. (2001), for LMME models with

ridge estimation as follows:

CDcondi = σ̂−2
rk (ŷrk − ŷrk(i))

′(ŷrk − ŷrk(i))

which can be decomposed into three components

CDcondi = CD1
condi + CD2

condi + CD3
condi

with
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CD1
condi = σ̂−2

rk (β̂rk − β̂rk(i))
′X ′X(β̂rk − β̂rk(i))

CD2
condi = σ̂−2

rk (b̂rk − b̂rk(i))
′U ′U(b̂rk − b̂rk(i))

CD3
condi = 2σ̂−2

rk (β̂rk − β̂rk(i))
′X ′U(b̂rk − b̂rk(i))

The CD1
condi

is related to the fixed effects, CD2
condi

identifies the observations that

may influence the predictors of the random effects, and finally CD3
condi

is related

to the covariance between β̂ and b̂, which is expected to be close to zero.

3.5.4 Likelihood distance

The likelihood distance is a popular measure for assessing the influence of the

ith observation on the corrected score estimate. We consider the corrected log-

likelihood evaluated at β̂rk and β̂rk(i), and a measure of the influence of the ith

observation on β̂rk can be defined as

LDi(β) = 2
{
l∗(β̂rk, k;X, y, b)− l∗(β̂rk(i), k;X, y, b)

}
.

A Taylor expansion of l∗(y, β̂rk(i), b, k) around β̂rk gives

l∗(β̂rk(i), k;X, y, b) = l∗(β̂rk, k;X, y, b) +
[
∂l∗(β,k;X,y,b)

∂β

∣∣∣β=β̂rk,b=b̃rk

]′ [
β̂rk(i) − β̂rk

]
+ 1

2

[
β̂rk(i) − β̂rk

]′ [
∂2l∗(β,k;X,y,b)

∂β∂β′

∣∣∣β=β̂rk,b=b̃rk

] [
β̂rk(i) − β̂rk

]
so,

LDi(β) = 2
[
∂l∗(β,k;X,y,b)

∂β

∣∣∣β=β̂rk,b=b̃rk

]′ [
β̂rk − β̂rk(i)

]
+
[
β̂rk − β̂rk(i)

]′ [
−∂

2l∗(β,k;X,y,b)
∂β∂β′

∣∣∣β=β̂rk,b=b̃rk

] [
β̂rk − β̂rk(i)

]
we have [

∂l∗(β, k;X, y, b)

∂β

∣∣∣β=β̂rk,b=b̃rk

]
= 0

[
−∂

2l∗(β, k;X, y, b)

∂β∂β′

∣∣∣β=β̂rk,b=b̃rk

]
=
Ark
σ̂2
rk

and so

LDi(β) = σ̂−2
rk

[
β̂rk − β̂rk(i)

]′
Ark

[
β̂rk − β̂rk(i)

]
.

As seen, we have LDi(β) = CDi(β). Similarly, it can be shown that LDi(b) =

CDi(b).
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3.6 Empirical distribution

To generate an empirical distribution of the test statistics under the null hypoth-

esis that no influential observations exist in the data, the following algorithm is

performed (see Lin et al. (1993); Rebai et al. (1994)):

Algorithm 3.2. The algorithm is carried out in four steps:

• Step 1. Fit model (2) to the data with stochastic linear restrictions (3) and

calculate the RRE of the parameters. An estimate of Z can be derived as

Ẑrk = X + σ̂−2
v v̂rkβ̂

′
rkΛ,

(see Zare et al. (2012)).

• Step 2a. Generate a new data vector as

y∗ = Ẑrkβ̂rk + Ub∗ + ε∗,

X∗ = Ẑrk + ∆,

r∗ = Rβ̂rk + e∗,

where ∆ is randomly generated as MN(0, In ⊗ Λ), b∗ ∼ N(0, σ̂2
1rkIq), ε

∗ ∼
N(0, σ̂2

rkIn), e∗ ∼ N(0, σ̂2
rkIm), and R is a known matrix.

• Step 2b. Compute the test statistics CDi(β), CDi(b), and CDcondi for

i = 1, 2, ..., n and save the order statistics of the set

{CDi(β), CDi(b), CDcondi}.

• Step 3. Repeat steps 2a and 2b, N times, for a reasonably large N . This

generates an empirical distribution for each order statistic.

• Step 4. Calculate the 100(1 − α) percentile for each order statistic to be

used as a threshold for the test statistic from the original analysis. If the ith

largest values of the test statistic from the original data exceed their respective

thresholds, then these observations are identified as influential.

4. Simulation Studies

In this section, three simulation studies are presented to evaluate the performance

of the estimators and the credibility of the proposed diagnostic measures, providing

further evidence of the good performance of the RRE in linear mixed measurement

error models.
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4.1 Simulation Study One

To further investigate the behavior of the estimators, a Monte Carlo simulation

study was conducted to compare the performances of the estimators mentioned

above. For this purpose, the ith data set was generated from the simulated data

as follows:

yi = Zβ + Ubi + εi, i = 1, ..., 1000,

X = Z + ∆ and ri = Rβ + ei,
(7)

where

yi = (y11i, ..., y1n1i, y21i, ..., y2n2i, ..., yl1i, ..., ylnli), bi = (b1i, b2i, ..., bli)
′,

Z = (z(1), ..., z(p)), z(t) = (z
(t)
11 , ..., z

(t)
1n1

, z
(t)
21 , ..., z

(t)
2n2

, ..., z
(t)
l1 , ..., z

(t)
lnl

)′, t = 1, ..., p,

and εi is rewritten in accordance with yi. Here, l represents the number of inde-

pendent groups, ni is the size of group i, and the total sample size is n =
∑l
i=1 ni.

The matrix U = 1n1
⊕ 1n2

⊕ ...⊕ 1nl
is an n× q matrix, where 1ni

is an ni× 1

vector of ones. Furthermore,

ri = (r1i, ..., rmi)
′, R = (R(1), ..., R(p)), R(t) = (R1j , ..., Rmj)

′, ei ∼ N(0, σ2Im).

To achieve different degrees of collinearity, following McDonald and Galarneau

(1975), the fixed effects variables are computed as

zit =
√

1− ρ2 wit + ρwi,p+1, i = 1, ..., n, t = 1, ..., p,

where wit are independent standard normal pseudo-random numbers and ρ2 rep-

resents the correlation between any two fixed effects. Three different values of

ρ were considered: 0.70, 0.80, and 0.90. For each set of explanatory variables,

the parameter vector was chosen as the eigenvector corresponding to the largest

eigenvalue of Z ′V −1Z.

The simulation study was carried out using R software (the R codes are avail-

able from the author upon request). The following combinations of parameters

were considered: n = 50 or n = 100, p = 3, εij ∼ N(0, σ2), bij ∼ N(0, σ2
1) for

i = 1, ..., q, with (σ2
1 , σ

2) = (0.1, 0.5) or (0.3, 0.4), Λ = diag(0, 0.05, 0.05, 0.05),

m = 2, and R
(t)
ij ∼ N(0, 1).

The simulation was replicated 1000 times for each combination of parameters,

generating new error terms for each replicate. For each replicate, the mean squared

error (MSE) of the estimators was computed as

MSE(β̃) =
1

1000

1000∑
j=1

3∑
l=1

(β̃lj − βl)2,
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Table 1: Estimated MSE values of the mentioned estimators with n = 50 .

ρ σ2 σ2
1 β̂ β̂r β̂k β̂rk

0.5 0.1 0.0727 0.0695 0.0696 0.0667

0.70

0.4 0.3 0.0573 0.0549 0.0552 0.0529

0.5 0.1 0.1052 0.0988 0.0993 0.0935

0.80

0.4 0.3 0.0817 0.0767 0.0777 0.0732

0.5 0.1 0.2206 0.1952 0.2021 0.1802

0.90

0.4 0.3 0.1659 0.1470 0.1537 0.1370

Table 2: Estimated MSE values of the mentioned estimators with n = 100 .

ρ σ2 σ2
1 β̂ β̂r β̂k β̂rk

0.5 0.1 0.0311 0.0290 0.0305 0.0285

0.70

0.4 0.3 0.0255 0.0237 0.0251 0.0233

0.5 0.1 0.0472 0.0425 0.0460 0.0415

0.80

0.4 0.3 0.0377 0.0338 0.0369 0.0331

0.5 0.1 0.1078 0.0889 0.1033 0.0855

0.90

0.4 0.3 0.0818 0.0668 0.0787 0.0646

where β̃lj denotes the estimate of the lth parameter in the jth replication, and β

represents the true parameter values. The results are presented in Tables 1-2.

Based on Tables 1-2, the following conclusions can be drawn:

• The estimated MSE values of all estimators increase with the level of collinear-

ity.

• The estimated MSE values of the estimators decrease as n increases.

• In all cases, β̂rk has smaller estimated MSE values than the other existing

estimators. Therefore, it is concluded that the proposed estimator performs

better than the other estimators based on estimated MSE values.

4.2 Simulation Study Two

To investigate the behavior of GL(β̂rk), GL(b̂rk), and GL(β̂rk, b̂rk) in linear mixed

measurement error models, we generated the ith set of simulated data according
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to model (7). In this simulation study, the value of ρ was set to 0.90, n = 50, and

(σ2
1 , σ

2) = (0.1, 0.5).

To create observations with high leverage, we considered wit ∼ N(5, 2) for i = 1

and i = 8, intended to generate two high-influence observations (observations 1

and 8). To visualize the performance of GL(β̂rk), GL(b̃rk), and GL(β̂rk, b̃rk), their

values were computed for 1000 simulated datasets by generating new error terms

and then averaging over the simulation runs.

Figures 1–2 present the generalized leverage plots from the simulated data. All

dotted lines correspond to three times the mean leverages. The figures show that

observations 1 and 8 have high generalized leverage on the fixed effects and on the

combined fixed and random effects.

4.3 Simulation Study Three

In this section, a parametric bootstrap simulation is performed to evaluate the

performance of Cook’s distance in terms of type I error and power of the test. The

jth simulated dataset was generated according to model (7), using the parameter

combinations from Simulation Study One. For each dataset, diagnostic measures

were calculated for the first observation (arbitrarily chosen).

To generate an empirical distribution of the test statistics under the null hy-

pothesis, the datasets were simulated as

y∗jh = Ẑrkj β̂rkj + Ub∗jh + ε∗jh, h = 1, ..., 1000,

X∗jh = Ẑrkj + ∆, r∗jh = Rβ̂rkj + e∗jh,

where ε∗jh, b
∗
jh ∼ N(0, σ̂2

rkjIn) and N(0, σ̂2
1rkjIq), respectively, and ∆ ∼ N(0, In ⊗

Λ). Additionally, β̂rkj , Ẑrkj , σ̂
2
rkj , and σ̂2

1rkj are the RRE estimates of parameters

from model (7).

The diagnostic measures were performed for the first observation of each sim-

ulated dataset, and the 100(1− α) percentile from the empirical distribution was

used as the threshold value. The estimated probability of type I error for different

test statistics at α = 0.05 was calculated as the proportion of datasets for which

the test statistic exceeded the 100(1− α) percentile of the empirical distribution.

To assess the power of Cook’s distance, two high-influence cases for the first

observation were considered:

(i) w1t ∼ N(3, 1), t = 1, 2, 3 with ε1 = 1.5,

(ii) w1t ∼ N(5, 2), t = 1, 2, 3 with ε1 = 2.

For each combination of parameters, 1000 datasets were generated according to

yi = Zβ + Ubi + εi, i = 1, ..., 1000,

Xi = Z + ∆, ri = Rβ + ei,
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Figure 1: Generalized leverage plots on fixed effects and random effects

Figure 2: Generalized leverage plot on combined fixed and random effects
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with the same parameters as in the type I error evaluation. For each dataset, RRE

estimates and Cook’s distances for the first observation were calculated. The power

was computed as the proportion of datasets for which Cook’s distances exceeded

the 100(1− α) percentile of the empirical distribution.

Based on Tables 3-4, the following conclusions are drawn:

(i) The type I error of the different Cook’s distances is close to the nominal level

of 0.05.

(ii) The power of the different Cook’s distances increases as the sample size

increases.

(iii) In case (ii), the power of Cook’s distances generally increased compared to

case (i).

Table 3: Type I error of Cook’s distance with different combination of parameters

P-value

n ρ σ2 σ2
1 CDi(β) CDi(b) CDcondi

50 0.70 0.5 0.10 0.038 0.052 0.053

0.40 0.30 0.046 0.055 0.053

0.80 0.50 0.10 0.037 0.052 0.052

0.40 0.30 0.046 0.052 0.053

0.90 0.50 0.10 0.041 0.051 0.054

0.40 0.30 0.045 0.049 0.047

100 0.70 0.5 0.10 0.033 0.045 0.043

0.40 0.30 0.038 0.043 0.045

0.80 0.50 0.10 0.028 0.045 0.045

0.40 0.30 0.035 0.049 0.053

0.90 0.50 0.10 0.033 0.046 0.044

0.40 0.30 0.032 0.044 0.040

5. Real Data Analysis:

6. Real Data Example

In this section, the historical market dataset for real estate valuation from Sindian

District, New Taipei City, Taiwan, is used to evaluate the performance of the pro-

posed diagnostic criteria. The dataset is publicly available online at the UCI Ma-

chine Learning Repository (https://archive.ics.uci.edu/ml/datasets.html)

https://archive.ics.uci.edu/ml/datasets.html
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Table 4: Power of Cook’s distance with different combination of parameters

Power

n ρ σ2 σ2
1 CDi(β) CDi(b) CDcondi

case(i) case(ii) case(i) case(ii) case(i) case(ii)

50 0.70 0.5 0.10 0.837 0.888 0.124 0.144 0.743 0.854

0.40 0.30 0.779 0.874 0.167 0.173 0.610 0.778

0.80 0.50 0.10 0.824 0.8892 0.130 0.146 0.727 0.838

0.40 0.30 0.751 0.857 0.173 0.187 0.542 0.746

0.90 0.50 0.10 0.775 0.877 0.122 0.154 0.677 0.810

0.40 0.30 0.696 0.831 0.158 0.186 0.520 0.723

100 0.70 0.5 0.10 0.938 0.964 0.251 0.311 0.850 0.926

0.40 0.30 0.947 0.970 0.342 0.413 0.768 0.903

0.80 0.50 0.10 0.934 0.960 0.259 0.318 0.846 0.926

0.40 0.30 0.973 0.982 0.402 0.479 0.833 0.933

0.90 0.50 0.10 0.925 0.952 0.262 0.330 0.837 0.916

0.40 0.30 0.828 0.958 0.344 0.427 0.770 0.904

and is labeled “Real Estate Valuation Data Set.” The input variables are as fol-

lows:

Y = house price per unit area,

X1 = house age,

X2 = distance to the nearest MRT station,

X3 = number of convenience stores in the living circle on foot,

X4 = latitude,

X5 = longitude,

transaction date (2012 or 2013).

Measurement errors are considered in some variables due to rounding of the

observed values. The dataset was fitted using a linear mixed measurement error

(LMME) model of the form

y = Xβ + Ub+ ε,

where y is a 414× 1 vector of response variables, X is a 414× 5 regression matrix,

and U is a 414× 2 design matrix. The transaction date (2012 or 2013) is modeled

as a random effect. The initial values for the variance components were set as

σ2 = 0.5 and σ2
1 = 0.1.

The condition number of Ẑ ′V −1Ẑ is 137,976.4, indicating severe multicollinear-

ity among the fixed effects variables. The 114th element of y and the 114th row
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of X were taken as r and R, respectively, for stochastic restriction purposes. The

parameter estimates for the LMME model are presented in Table 5.

Table 5: Parameter estimates for the Real estate valuation data set.
Parameter corrected score Restricted score Restricted ridge score

β1 -0.2558 -0.2537 -0.2503

β2 -0.0055 -0.0055 -0.0056

β3 1.3125 1.2973 1.3253

β4 -25.4877 -26.5538 -72.5817

β5 5.5868 5.8014 15.2575

b1 -1.2264 -0.8049 -0.8027

b2 1.2263 1.7112 1.7216

σ2 83.81 86.88 88.02

σ2
1 1.8369 2.1843 2.18

Generalized leverage plots of the observations are shown in Figures 3-4. All the

dotted lines correspond to three times the mean leverages. Figure 3 shows that

observations 9, 117, 250, 256, and 348 have high generalized leverage on the fixed

effects based on the generalized marginal leverage GL(β̂rk). Figure 4 shows that

these observations also have high generalized leverage on the fixed and random

effects.

Additionally, the Cook’s distance for fixed and random effects, as described

in previous sections, was calculated for each observation. Figures 5-6 show plots

of Cook’s distance for fixed effects, random effects, and the Conditional Cook’s

distance, respectively. A glance at Figures 5-6 indicates that observation 271 has

a substantial influence on the fixed effects, random effects, and predicted values.

7. Discussion

In this paper, to overcome the problem of multicollinearity, the restricted ridge es-

timator (RRE) for the parameter vector using Nakamura’s corrected score function

is presented for LMME models. The performance of the estimator was evaluated

using the asymptotic MSEM criterion, and it was shown that, under this criterion,

the proposed estimator is more efficient than existing estimators.

Furthermore, diagnostic methods based on the RRE were presented to identify

high-leverage points and influential observations in the proposed model. Using

parametric bootstrap simulations, different Cook’s distances were studied in terms

of type I error and test power. It was found that the type I error of the test

statistics for different parameter combinations is close to the nominal value α, and
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Figure 3: Plot of generalized leverage for fixed effects and random effects

Figure 4: Plot of generalized leverage for fixed and random effects
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Figure 5: Plot of Cook’s distance for fixed effects and random effects

Figure 6: Plot of Conditional Cook’s distance
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that the power of the test statistics increases with the sample size. Both simulation

studies and real data analysis demonstrate that the proposed diagnostic measures

perform very well in correctly identifying influential observations in LMME models

with RRE.
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8. Appendix

Lemma 8.1. Assume that square matrices A and C are not singular and B and

D are matrices with proper orders; then (A+BCD)−1 = (A−1 − A−1B(C−1 +

DA−1B)DA−1 . (Rao et al. (2008), Theorem A. 18)

Proof. Proof of Theorem 3.1

β̂rk(i) =
[
X ′(i)V

−1
[i] X(i) +R′W−1R− tr(V −1

[i] )Λ + kIp

]−1

(X ′(i)V
−1
[i] y(i) +R′W−1r)

=
[
Ark −X ′cic′iX/cii + (cii + 1

cii
c′ici)Λ

]−1

× (X ′V −1y −X ′cic′iy
/
cii +R′W−1r)

= [Ark −X ′cic′iX/cii]
−1 × (X ′V −1y −X ′cic′iy

/
cii +R′W−1r) +Op(n

−1)

Using Lemma 8.1, it can be written

(Ark −X ′cic′iX/cii)
−1 = A−1

rk +A−1
rk X

′ci(1−
c′iXA

−1
rk

−1
X ′ci

cii
)−1A−1

rk

With substituting the above expression in β̂k(i), it is concluded that
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β̂rk(i) = β̂rk −A−1
rk X

′ci
v̂rki
pii

+Op(n
−1)

b̂rk(i) = ΣU ′(i)V
−1
[i]

[
y(i) −X(i)β̂k(i)

]
= ΣU ′(i)V

−1
[i] y(i) − ΣU ′(i)V

−1
[i] X(i)β̂rk(i)

= Σ(U ′V −1y − U ′cic
′
iy

cii
)

− Σ(U ′V −1X − U ′cic
′
iX

cii
)
[
β̂rk −A−1

rk X
′ci
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pii
+Op(n

−1)
]
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rk X
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′
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rk X
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pii
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pii
,

and

(n+m− 1)σ̂2
rk(i) = (y(i) −X(i)β̂rk(i))

′V −1
[i] (y(i) −X(i)β̂rk(i))

− tr(V −1
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