Journal of Data Science and Modeling, Vol. 3, No. 1, 79-93, December 2024

Research Manuscript

Recurrent Neural Networks for Loan
Default Prediction: A Dual Deterministic

and Uncertainty-Aware Framework

Navid Ashraf!, Shokouh Shahbeyk*, Hossein Teimoori Faal!

!Faculty of Statistics, Mathematics, and Computer Science,

Allameh Tabataba’i University, Tehran, Iran.

February 19, 2026

Recieved: 29/10/2025 Accepted: 20/02/2026

Abstract:

This study explores the application of Recurrent Neural Networks (RNNs) for
predicting loan defaults, with a particular emphasis on incorporating uncertainty
estimation into the predictive framework. Conventional RNN models demonstrate
high accuracy, but they fail to provide quantitative measures of prediction uncer-
tainty. To address this limitation, a dual-modeling approach is proposed: a stan-
dard RNN model for achieving high predictive accuracy and an uncertainty-aware
RNN model incorporating Bayesian inference. The uncertainty-aware model en-
ables enhanced risk assessment through confidence level estimation and improved
capture of complex temporal dependencies in financial data. Experimental results
indicate that both proposed models outperform traditional methods, with the
uncertainty-aware variant offering superior risk evaluation capabilities through its
probabilistic outputs. These findings contribute to advancing credit risk assess-
ment methodologies and offer practical value for financial institutions seeking more

robust default prediction systems.
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1. Introduction

Loan default prediction is a cornerstone of financial risk management, directly in-
fluencing institutional stability and lending strategies. Traditionally, credit scoring
models have used logistic regression, decision trees, and other traditional mod-
els. These models struggle to capture the nonlinear temporal dependencies found
in sequential data, payment histories, and economic indicators. Machine learn-
ing, particularly RNNs, has shown effectiveness in dynamic time series modeling.
However, RNNs mainly focus on maximizing predictive accuracy, with little ex-
ploration into uncertainty quantification for robust risk assessment. To address
this gap, this paper proposes a dual RNN architecture: one for outcome prediction
and the other for uncertainty estimation. This approach allows for evaluating their
effectiveness in credit risk management.

To the best of our knowledge, Zandi et al. integrated attention routing mecha-
nisms with RNNs to enhance credit risk prediction and showcased the advantages
of RNNs, including Long Short-Term Memory (LSTM) networks, on financial time
series data. Their work was built upon and further developed in hybrid methods.
Jiang (2024) reported that models based on RNNs outshined their counterparts
from traditional machine learning (ML) more often than not, while Robinson and
Sindhwani (2024) built their risk evaluation improvement framework using RNNs
as the base for a gradient boosting approach. Other notable works aimed at im-
proving the applicability of RNNs in handling problems of data imbalance and
complexity include Liang’s TabNet (Liang , 2023) enhanced with genetic algo-
rithms, and the oversampling frameworks by Owusu et al. (2023) employing
Deep Neural Networks (DNNs).

Beyond accuracy in prediction, uncertainty-aware models serve a crucial pur-
pose in compliance with risk mitigation policies. This was discussed by Noriega et
al. (2023), who noted the importance of quantifying uncertainty while calculating
estimations of Loss Given Default (LGD), and Alam and Ali (2022) also applied
knowledge graphs to improve interpretability under uncertainty. The literature
addresses the asymmetric effects of uncertainty; for example, in bond markets,
increased uncertainty results in widening spreads because of higher default risk
(Huynh and Phan , 2024). Moreover, it seems that banks with pre-existing bor-
rower relationships show some behavioral rigidity even when default probabilities
rise Grimme (2023). Still, the majority of RNN-based credit models appear to
disregard uncertainty, which reduces the efficacy of these models in the rapidly
changing financial landscape.

ML models, such as ensemble methods (e.g., Random Forests) and deep learn-
ing techniques, achieve the highest accuracy by understanding the complex rela-

tionships within data, whether structured or unstructured (Bari , 2024). Neural
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networks used with logistic regression are examples of hybrid methods that perform
well, provide some level of explanation, and meet regulatory demands (Addy et al.
, 2024). Still, problems such as data imbalance, typically addressed with techniques
like Synthetic Minority Oversampling Technique (SMOTE) or cost-sensitive learn-
ing (Noriega et al. , 2023), and the black-box nature of deep learning breaching
the requirements of Basel III remain.

Building upon their strength in modeling sequences, RNNs (particularly LSTMs)
have been successfully applied to various financial forecasting tasks, including stock
prices (Agarwal et al. , 2024) and exchange rates (Sako et al. , 2022). In credit
risk, architectures combining RNNs with attention mechanisms (Zandi et al. |
2024) or gradient boosting (Robinson and Sindhwani , 2024) have shown promise.
However, a critical gap remains in seamlessly integrating uncertainty quantifica-
tion, a vital component for robust risk assessment, into temporal credit models.
While methods like Bayesian Neural Networks, Monte Carlo Dropout, and model
ensembles exist for uncertainty estimation (Basora et al. (2025); Kommalapati
et al. (2022); Tang et al. (2024)), their application within RNN frameworks for
dynamic loan default prediction is underexplored, which this paper addresses.

In terms of credit risk, Nagl et al. (2022) demonstrated how quantifying
uncertainty can assist in compliance with regulation in LGD models. Additionally,
Alam and Ali (2022) used uncertainty-augmented knowledge graphs to enhance
interpretability. However, the incorporation of RNNs into these frameworks to
model credit risk over time remains unexplored.

Current research is focused on either improving RNN accuracy in predicting
loan defaults or quantifying uncertainty in static machine learning models. The
intersection of these areas using probabilistic RNNs for dynamic credit risk assess-
ment has not been adequately explored, despite financial data being temporal and
regulations mandating transparency regarding risks.

The rest of the paper is organized as follows. Section 2 formalizes the method-
ology, covering data preprocessing, model architectures, and evaluation metrics.
Section 3 outlines the experimental framework, which includes a description of the
dataset, an analysis of risk factors, and optimization of hyperparameters. Section
4 presents comparative results of the deterministic and Bayesian RNNs, highlight-
ing performance-uncertainty trade-offs and operational impacts. Finally, Section

5 provides a brief conclusion.

2. Preliminaries and Methodology

This section details the methodology for predicting loan defaults, including data

preprocessing (temporal structuring, static feature engineering, and class imbal-
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ance handling), two hybrid neural architectures (deterministic and Bayesian RNNs),
and comprehensive evaluation metrics for both predictive performance and uncer-
tainty calibration.

Loan default prediction is formulated as a binary classification task operating
on a heterogeneous dataset consisting of temporal sequences and static features.
The dataset D = {(X;,s;,v:)}Y; is defined such that each instance includes a
temporal sequence X; € RT*4 (where T is the sequence length and d; is the num-
ber of temporal features) representing the time-varying financial behavior of the
i-th borrower across 1" time steps. Each time step ¢ incorporates dynamic features

dtir
it

such as the loan amount z°2", interest rate zf3', and debt-to-income ratio x
, ,

In addition, static features s; € R% (where d is the number of static features)
capture immutable borrower metadata, including credit score sf‘edit, loan-to-value
v . The target variable y; € {0, 1} is a binary indicator
of default (y; = 1) or non-default (y; = 0) for the i-th loan.

The objective is to design a function f : X x S — [0,1] that maps temporal

Income

ratio s;* ¥, and income s;

sequences X; and static features s; to the estimated probability of default ¢; =

P(y; = 1] X, s;). This dual modeling framework consists of two components:

e A deterministic model
argmeinﬁ(fg(X, $),Y)
to maximize predictive accuracy.

e A probabilistic model that estimates uncertainty by learning an approx-
imate posterior distribution g4 (3 | X, s) using a Monte Carlo dropout vari-
ational inference scheme, primarily designed to quantify epistemic (model)

uncertainty.

2.1 Data Preprocessing

The raw dataset undergoes three critical preprocessing stages to ensure compati-
bility with temporal and static modeling frameworks while addressing data quality

challenges.

2.1.1 Temporal Data Structuring

To model evolving borrower behavior, time-varying features are structured as se-

quences:

e Sequence Creation: For each loan 7, all records are aggregated by borrower
ID and sorted chronologically by year to construct a temporal sequence X; =

[%i1,%i2,...,%;7], where each z;; € R represents the feature vector at
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time step t. The selected temporal features consist of dynamic variables that
capture payment behavior over time, ensuring the model reflects longitudinal

financial patterns.

e Missing Value Imputation: In cases of incomplete sequences, missing val-

ues are imputed using forward-fill interpolation, defined as xg‘tissmg =Tt 1,
which preserves temporal continuity without introducing future leakage or

violating the temporal ordering of the data.

2.1.2 Static Feature Engineering

Static borrower metadata is preprocessed to ensure numerical stability and com-

patibility with neural networks:

e Numerical Normalization:

num
K2

Min-max scaling is applied to features s (e.g., income):

ST — min(s™™)

2 max(snum) _ min(snum) :

norm __

S

Bounding values to [0, 1] mitigates gradient instability during training,.

e Categorical Encoding:

— One-hot encoding is applied for nominal variables:

55 = OneHotEncode(s$").
— High-cardinality features (e.g., region) are embedded into dense vectors

using learned embeddings.

2.1.3 Class Imbalance Mitigation

To mitigate the skewed distribution between default (y = 1) and non-default
(y = 0) classes, the Synthetic Minority Oversampling Technique (SMOTE) is im-
plemented. This approach generates synthetic samples exclusively for the minority
class (default cases) within the training dataset through interpolation in feature
space. For each minority-class instance x;, k = 5 nearest neighbors are identified.

Synthetic instances are then created using the convex combination:
Tsynthetic = L4 + )\(‘/'Ej - xi)7 A U(O» ]-)

where z; denotes a randomly selected neighbor from the k-nearest neighborhood,

and A is a uniformly distributed random variable. Crucially, this oversampling
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procedure is confined strictly to the training partition to prevent data leakage into
validation and test sets, thereby maintaining the integrity of out-of-sample evalua-
tion metrics. The synthesized instances augment the minority class representation
while preserving the topological structure of the original feature space.
Application to Sequential Data: Given the temporal nature of x;, SMOTE
is applied only to the static feature vectors s; and the final temporal embedding
Ztemp derived from the training sequences. This ensures that the synthetic samples
preserve the learned temporal dynamics while augmenting the minority class in
the fused feature space [Ztemp, Si]. The raw temporal sequences z; themselves are
not directly interpolated to avoid generating unrealistic or temporally inconsistent

payment trajectories.

2.2 Model Architectures

This section formalizes two neural architectures for default risk prediction: a de-
terministic recurrent network (Section 2.2.1) and its probabilistic extension incor-
porating uncertainty quantification (Section 2.2.2). Both frameworks jointly pro-
cess temporal payment sequences and static borrower metadata through hybrid
pathway designs, but fundamentally differ in their capacity to model predictive

confidence under data ambiguity.

2.2.1 Baseline RNN (Without Uncertainty)

The baseline hybrid architecture processes both temporal sequences and static
features to predict loan defaults through integrated pathways. Temporal inputs
X; € R4 feed into two stacked LSTM layers with 64 hidden units each, governed
by hidden state transitions:

pY = LSTMW (2, b)) and AP = LSTM®@ (h{V 2, ).
A critical attention mechanism then computes time-step weights via:

o — exp (’UT tanh (Wh?) + b))

- Zle exp (vT tanh (Wh;f) + b)) ,

ultimately generating the temporal embedding ziemp = Zle ath§2).

Simultaneously, static features s; € R% undergo nomlinear transformation

through two dense layers expressed as:

Zstatic = Wa - ReLU (Wys; + by) + b,
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where weight matrices W, € R32%% and W, € R32*32 enable dimensionality
compression. The fused representation 2fused = Ztemp @ Zstatic feeds into a sigmoid-
activated prediction layer yielding default probability §; = o (W, 2tused + bo)-
Training employs weighted binary cross-entropy:
N

1
L=— [wlyz log i + wo(1 — y;) log(1 — 45)] ,

N
with imbalance-adjusted weights w; = 2—%1 and wy = W Optimization utilizes
the Adam algorithm (n = 0.001, v = 1 x 107%) with key regularization including
20% dropout after each LSTM layer and strict early stopping triggered after 10
epochs of validation loss stagnation.

2.2.2 Uncertainty-aware RNN using Monte Carlo Dropout

Building on the baseline architecture, this enhanced model integrates Bayesian
inference to quantify prediction confidence—enabling robust risk assessment under
data ambiguity. The framework replaces deterministic LSTM layers with Bayesian
LSTMs using Monte Carlo dropout, where dropout masks m; ~ Bernoulli(p = 0.3)
are applied to LSTM gates during both training and inference:

(l) = LSTM® (mt © my, hﬁljl ©) mt) .

This approximates Bayesian posterior inference over weights while processing tem-
poral sequences. Concurrently, static features s; are encoded through two dense
layers (64 units, ReLU activation):

Zstatic = Wa - ReLU (Wlsi + bl) + bs.

The fused representation Zfysed = Ztemp @ Zstatic feeds into a probabilistic output
layer that generates a mean prediction p; = o (W,2fsea + by) and prediction
variance estimated via M = 50 stochastic forward passes:

1 X 2
= Z (@gm) *Nz‘) ;
m=1

where yAgm) denotes the m-th Monte Carlo sample.

<0

Note: MC dropout is primarily an approximation for capturing epistemic
(model) uncertainty. To quantify aleatoric (data) uncertainty, explicit modeling
of heteroscedastic noise would be required, which is beyond the scope of this
approximation.

Training optimizes the Evidence Lower Bound (ELBO) loss:

LELBo = — Z yilog pi + (1 = i) log(1 — ps)] + B - KL (qs (W) || p(W)),
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with g4(W) as the variational posterior (MC dropout approximation), p(W) ~
N(0,1) the Gaussian prior, and 8 = 0.01 scaling the KL divergence. Additional
regularization includes an L2 penalty Lo = )\Zle [W®|2 where A = 0.01,
yielding a total loss £ = Lgrgo + Lr2. Optimization uses Adam with learning
rate n = 0.001 and decay rate v = 1 x 1075 over 100 epochs with early stopping

(patience: 10 epochs) to prevent overfitting.

2.3 Evaluation Metrics

To rigorously assess model performance and uncertainty calibration, we employ
the following metrics, each addressing distinct aspects of predictive reliability in

loan default risk assessment.

2.3.1 Performance Metrics

e Area Under the ROC Curve (AUC-ROC):
This fundamental metric quantifies a model’s discriminatory power to dis-
tinguish between default (y = 1) and non-default (y = 0) cases across all
classification thresholds. Computed as the integral of the Receiver Operat-
ing Characteristic curve—which plots the True Positive Rate (TPR) against
the False Positive Rate (FPR)—the AUC is formally expressed as:

1
AUC = / TPR(FPR ™ (r))dr.
0

Notably robust to class imbalance, this property makes AUC-ROC partic-
ularly valuable for credit risk datasets where default events are typically
sparse. The metric’s threshold-agnostic nature provides a comprehensive
view of model performance, with higher values indicating superior separation

of risky and non-risky borrowers independent of arbitrary cutoff selections.

e F1-Score:
The F1-Score balances precision and recall as their harmonic mean:

Pl 2 - Precision - Recall

Precision + Recall -

This metric reconciles Type I errors (false default flags) and Type II errors
(missed defaults), essential when both precision and recall carry operational

significance.

e Precision:

Precision quantifies the fraction of correctly predicted defaults among all
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instances flagged as defaults:
TP
TP + FP’

This metric penalizes overaggressive risk classification, particularly false pos-

Precision =

itives where creditworthy applicants are incorrectly flagged as default risks.
Such errors incur tangible costs through lost revenue opportunities and rep-
utational damage.

e Recall:
Recall measures the proportion of true defaults correctly identified by the
model: TP
l=—"—.
Reeall = 5 PN

This metric prioritizes minimizing missed defaults (false negatives), directly
addressing the most consequential failure mode in lending risk assessment.
By optimizing recall, models ensure maximum coverage of actual defaults, a

critical safeguard against catastrophic capital loss.

2.3.2 Uncertainty Calibration Metrics

e Expected Calibration Error (ECE):
The ECE quantifies the alignment between predicted probabilities ¢; and em-
pirical frequencies, measuring reliability in probabilistic forecasting. Com-
puted through binning-based estimation: predictions are partitioned into
B =10 bins {By, Bs, ..., B} based on g; values, with ECE derived as:

B
B
ECE = Z |N—m| |Accuracy (By,) — Confidence(B,,)]|,
m=1

where Accuracy (B, ) is the actual outcome frequency in bin B,,,, and Confidence(B,,)
is the average predicted probability. Lower ECE values indicate superior

probability calibration.

Further calibration assessment is provided via a Reliability Diagram, which
offers a direct visualisation of the alignment between predicted probabilities

and actual event rates.

3. Comprehensive Dataset and Experimental Frame-

work

This section employs a publicly accessible Kaggle dataset (”Loan Default Predic-
tion Dataset”) containing 148,671 loan applications Kaggle (2023) to develop pre-
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dictive models for loan default risk. The dataset features comprehensive temporal
sequences capturing annual financial behaviors including loan amounts, interest
rates (both nominal rates and spreads relative to benchmarks), debt-to-income
ratios (dtirl), and upfront charges, alongside static attributes encompassing bor-
rower demographics (gender, age, income, region, occupancy type), loan character-
istics (type, purpose, LTV ratio, collateral), and credit history indicators (credit
scores, open credit lines, co-applicant status). The binary target variable Status
(default=1, non-default=0) enables supervised learning for default prediction.

Critical risk determinants identified through exploratory analysis include tem-
poral drivers: rising debt-to-income ratios (Adtirl > 0) and interest rate spreads
(spread > 3%), alongside static predictors: high loan-to-value ratios (LTV >
80%), subprime credit scores (Credit_Score < 600), and income-to-loan ratios
(fome— < 0.25).

Data preprocessing addressed inherent challenges: temporal feature gaps used
forward-filling to maintain sequence integrity, while categorical variables employed
mode imputation. The severe class imbalance (7.2% defaults) was mitigated exclu-
sively in training partitions via SMOTE oversampling, preventing validation/test

set contamination.

3.1 Hyperparameter Optimization Protocol

A Bayesian optimization framework (Optuna, 50 trials) tuned critical parameters

to maximize AUC-ROC while minimizing Expected Calibration Error:

LSTM Units € {32, 64,128},
Dropout Rate ~ ¢£(0.1,0.5),
Learning Rate ~ log-U/(1074,1073),
Batch Size € {64,128, 256}

This systematic approach balanced discriminative power with uncertainty reliabil-

ity, essential for deployment in regulated lending environments.

3.2 Computational Implementation and Cost

All models were implemented in Python 3.9 using TensorFlow 2.10 and trained on
a single NVIDIA RTX 4090 GPU with 24GB VRAM. The deterministic base-
line model required approximately 45 minutes to train over 85 epochs, while
the uncertainty-aware (MC Dropout) model, due to its multiple stochastic for-
ward passes during training, took approximately 2 hours and 15 minutes over 100
epochs. Inference for a single loan instance took 5 ms for the baseline and 250

ms for the uncertainty-aware model (averaged over 50 MC samples).
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4. Results

Here, we present comparative outcomes between Baseline and Bayesian RNN mod-
els, highlighting the Baseline’s marginal predictive advantage (AUC: 0.872 vs.
0.864) against the Bayesian variant’s superior uncertainty calibration (59% lower

ECE) and its transformative impact on risk-based decision systems.

4.1 Performance Metrics

The proposed models were evaluated on the test set, with the Bayesian RNN
demonstrating competitive accuracy and superior uncertainty calibration com-
pared to the baseline RNN. The complete results are shown in Table 1.

Table 1: Performance Comparison (Test Set)

Metric Baseline RNN | Bayesian RNNN
AUC-ROC 0.872 0.864
F1-Score 0.722 0.703
Precision 0.781 0.765
Recall 0.673 0.652

The baseline RNN demonstrated a marginally higher AUC-ROC than its
Bayesian counterpart (A = 0.008), likely due to the conservative uncertainty reg-
ularization imposed by the Bayesian formulation. In terms of the precision—recall
trade-off, the baseline RNN achieved higher precision (0.781 vs. 0.765), which is
particularly important for reducing false-positive default predictions. However,

this improvement was accompanied by a reduction in recall.

4.2 Uncertainty Calibration

The Bayesian RNN provides reliable uncertainty estimates, essential for risk-aware

decision-making. The results are shown in Table 2.

Table 2: Uncertainty Calibration Performance
Metric | Baseline RNN | Bayesian RNN

ECE 0.081 0.033

The Bayesian recurrent neural network demonstrated significantly enhanced
calibration performance, evidenced by a 3.3% Expected Calibration Error (ECE)
compared to the baseline’s 8.1%, indicating superior alignment between predicted

probabilities and empirical frequencies.
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4.3 Key Findings

The Bayesian RNN'’s probabilistic outputs enable three actionable strategies for
financial risk mitigation. Loans exhibiting high predicted default probability
(; > 0.7) coupled with substantial uncertainty (confidence interval width > 0.25)
are systematically flagged for manual review, prioritizing cases where model con-
fidence is insufficient for automated decisions. For regulatory compliance, the
model’s 95% prediction intervals (u;+1.960;) directly satisfy Basel III stress testing
requirements by providing statistically rigorous confidence bounds for capital re-
serve calculations, replacing traditional heuristic approaches. Dynamic risk-based
pricing leverages uncertainty metrics: low-uncertainty loans (o; < 0.1) qualify
for competitive interest rates (< 5%), while high-uncertainty cases (o; > 0.2)
incur risk premiums scaled to the predicted variance (+150 bps base premium

+50 - o; bps), aligning pricing with quantified default risk uncertainty.

The Bayesian RNN’s uncertainty quantification transforms risk management
by enabling proactive intervention for high-risk loans (u; > 0.7, CI width
> 0.25), reducing false negatives by 8% through manual review flags while si-
multaneously applying risk-based pricing (+3% APR) to low-confidence loans
where traditional models took no action. This operational superiority (Table 3)
is achieved despite a marginal 0.008 AUC trade-off (0.864 vs. 0.872), as the 59%
improvement in uncertainty calibration (ECE 0.033 vs. 0.081) and enhanced in-
terpretability from combined attention-uncertainty attribution (Table 4) directly
enable full regulatory compliance (PICP=94.2%), transforming statistical rigor

into Basel I1I-aligned capital decisions.

Table 3: Decision-Making Impact

Scenario Baseline RNN Bayesian RNN
High-Risk Loan False Negative Rate: 12% | Flagged for Review (A FNR: -8%)
Low-Confidence Loan No Action Risk Premium Applied (+3% APR)
Regulatory Audit Partial Compliance Full Compliance (PICP=94.2%)

Table 4: Trade-off Analysis

Aspect Baseline RNN Bayesian RNIN
Predictive Accuracy AUC: 0.872 AUC: 0.864
Uncertainty Calibration ECE: 0.081 ECE: 0.033
Interpretability Attention Weights | Attention + Uncertainty Attribution
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5. Conclusion

This study presents a dual RNN framework for loan default prediction, comparing
a conventional temporal model with an uncertainty-aware Bayesian variant to ad-
dress key limitations in credit risk modeling. The baseline RNN achieved strong
predictive performance (AUC = 0.872), confirming the effectiveness of LSTM ar-
chitectures in capturing temporal dependencies in repayment behavior. Although
the uncertainty-aware RNN exhibited a marginal reduction in AUC (A = —0.008),
it provided calibrated uncertainty estimates (ECE = 0.033), enabling lenders to
identify high-risk predictions with low confidence, prioritize manual review, and
support regulatory stress-testing and risk management requirements.

While the Bayesian RNN incurs higher computational costs, its calibration re-
liability and interpretability justify this trade-off for high-stakes lending decisions.
Future work should explore hybrid architectures (e.g., transformer-RNN ensem-
bles) to better capture very long-range dependencies in credit histories and develop
real-time uncertainty monitoring systems for dynamic market environments where
risk profiles evolve rapidly. This research underscores the transformative potential
of uncertainty-aware Al in finance, where confidence in predictions is as critical as

accuracy itself.
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