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Abstract:

The Fuzzy K-Nearest Neighbour (FKNN) method is a classification approach

that integrates fuzzy theories with the K-Nearest Neighbour classifier. The algo-

rithm computes the degree of membership for a given dataset within each class

and then chooses the class with the highest degree of membership as the assigned

classification outcome. This algorithm has several applications in regression prob-

lems. When the mathematical model of the data is not known, this method can

be used to estimate and approximate the value of the response variable. This

paper introduces a method, which incorporates a parametric distance measure to

empower decision-makers to make precise selections across several levels. Further-

more, we provide an analysis of the algorithm’s strengths and shortcomings, as well

as a comprehensive explanation of the distinctions between the closest neighbour

approach in tasks of classification and regression. Finally, to further elucidate the

principles, we present a range of examples that demonstrate the application of

closest neighbour algorithms in the classification and regression of fuzzy numbers.
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1. Introduction

The K-Nearest Neighbours (KNN) algorithm, a non-parametric approach, is a

widely used machine learning tool for classification, clustering, and regression ap-

plications. It belongs to the category of lazy learning algorithms, which eliminate

the need for offline training. The K-Nearest Neighbours method performs a di-

rect search over all of the training instances during the classification stage for a

particular testing example. We accomplish this task by calculating the distances

between the testing example and all of the training data sources. The objective

of this search is to identify the closest neighbours of the testing case in order

to get a classification result. This algorithm ascertains the class affiliation of an

unlabelled sample by considering the class affiliations of the K-labelled samples

that are in closest proximity to it. Various studies have explored the choice of

K, proposing various variants of KNN. However, no variant has proven to out-

perform all others. Some proposed variants ensure that the K nearest neighbours

are close to the unlabelled sample and find K along the way. These variants have

been tested and compared to the standard KNN in theoretical scenarios and for in-

door localization based on ion-mobility spectrometry fingerprints, achieving higher

classification accuracy while maintaining the same computational demand Müller

(2023). Another variation of KNN uses the Nk interaction graph to determine the

K Nearest Neighbours, allowing for the formation of clusters with arbitrary shapes.

The original KNN has been compared to two new algorithms based on the Nk in-

teraction graph in tests with datasets that have different properties Yacoub and et

al. (2022). Additionally, researchers propose a novel classifier, Power Muirhead

Mean K-Nearest Neighbours (PMM-KNN), to address challenges with outliers,

small datasets, and unbalanced datasets. PMM-KNN calculates the local means

of every class using the Power Muirhead Mean operator and has outperformed

three state-of-the-art classification methods in experiments with five well-known

datasets De Castro and Tinos (2022). Bian and colleagues Bian and et al. (2020)

proposed a novel classification methodology based on the fuzzy K-nearest neigh-

bours (FKNN) algorithm, referred to as the fuzzy KNN method with adaptive

closest neighbours. The primary objective of this methodology was to ascertain a

distinct optimal value of K for every testing sample. The cited work in Maillo et

al. Maillo and et al. (2019) proposed both the global approximate hybrid spill

tree FKNN and the local hybrid spill tree FKNN. Both approximate approaches

aim to improve classification efficiency while maintaining accuracy and fidelity.

The integration of fuzzy sets with the KNN algorithm is motivated by the need

to handle real-world data characterized by ambiguity, noise, and overlapping class

boundaries. Traditional KNN relies on crisp classifications, which may fail to cap-

ture the inherent uncertainty in data where samples do not distinctly belong to
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a single class. Fuzzy KNN (FKNN) addresses this limitation by assigning partial

membership degrees to neighbours, thereby refining the decision-making process.

This approach is particularly advantageous in scenarios such as medical diagnos-

tics, financial forecasting, and sensor data analysis, where imprecision is prevalent.

By incorporating fuzzy theory, FKNN enhances robustness and interpretability

while mitigating the sensitivity to outliers and imbalanced datasets.

Zheng et al.’s Zheng and et al. (2023) study integrates the fuzzy K-nearest neigh-

bour technique with the enhanced Sparrow Search Algorithm to derive numerical

outcomes and evaluate their predictive precision. In their study, Wongkhuenkaew

et al. (Wongkhuenkaew and et al. (2023)) outlined the use of the fuzzy K-nearest

neighbour (FKNN) method for feature classification in the dental fluorosis classifi-

cation system. In their study, Memis et al. (Memis and et al. (2022)) introduced

a novel method known as FPFS-kNN (Fuzzy Parameterised Fuzzy Soft kNN). This

algorithm demonstrates superior performance compared to previous kNN-based al-

gorithms, achieving higher accuracy estimates in 24 out of 35 datasets. Kumbure

et al. Kumbure and et al. (2020) developed the mean-based K closest neigh-

bours approach. This technique uses the Bonferroni mean statistic. Biswas et al.

proposed a dynamic fuzzy K-nearest neighbour classifier that is independent of pa-

rameters and incorporates feature weighting relevant to each class. The challenges

associated with determining an optimum K-value and a set of feature optimal

weights, which are contingent upon the class, were reformulated as optimization

issues with a single objective in their resolution. To address the optimisation prob-

lem, the researchers used Differential Evolution Biswas and et al. (2018). Zhai

et al. Zhai and et al. (2021) proposed a concise framework for fuzzy K-nearest

neighbour optimisation. This approach entails iteratively transferring instances

from the training set T to the beginning instance set S, after selecting pertinent

examples from T . The authors explicitly partitioned their approach into three dis-

tinct phases. To begin, rather than using the variable T , the algorithm employs

the function S to identify the K-nearest neighbours and thereafter calculates the

fuzzy membership degrees of these selected KNN. The algorithm then uses the

fuzzy K-nearest neighbours (KNN) approach to compute the fuzzy membership

degrees of variable x. The quantified information entropy of x ultimately deter-

mines the selection of an instance. The writers Patel and Thakur came up with a

way to fix the problem of uneven data and pick the right test instance memberships

by combining an adaptive K-nearest neighbour technique with fuzzy KNN (Patel

and Thakur (2019)). In Li et al. Li and et al. (2020, 2023) publication, the au-

thors of the study presented two classification methods: a fuzzy granule K-nearest

neighbour and a boosted fuzzy granule K-nearest neighbour. They developed the

techniques in this study using fuzzy granulation data.
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The majority class, including its nearest neighbours, decides the classification of

a new sample using the K-Nearest Neighbours (KNN) method, which is based on

the principle of majority voting. A distinct imbalance in data collection necessi-

tates consideration of the potential limitations associated with the majority voting

principle. In particular, this methodology demonstrates a preference for classify-

ing novel samples by considering the prevalence of the class or classes that have a

significant sample count. The primary factor contributing to this dominance is the

higher prevalence of these classes among the K closest neighbours Ramadhani and

et al. (2023). Using local means generated from the classes present among the

nearest neighbours is one plausible approach to address this constraint. The de-

termination of class assignment is contingent upon the local mean vector in close

proximity, rather than being only reliant on the number of nearest neighbours.

This methodology ensures that classes with a larger number of samples do not

unduly influence classes with a smaller number of instances. Two factors influence

the FKNN algorithm’s classification results: the dominant class and the proximity

of the unclassified sample to its nearest neighbours. It is important to note that

differences in distance measurements can make it challenging to accurately judge

how similar two samples are, which also affects the process of classifying.

Nearest neighbour (NN) algorithms, particularly in the context of regression, are

foundational techniques in the field of machine learning and statistics. The pri-

mary idea behind the NN approach is to leverage the proximity of data points

to make predictions about unknown instances. In a standard nearest neighbour

regression, the algorithm identifies the ‘K’ closest training examples to a query

point and aggregates their outputs, commonly by averaging, to predict the target

value for that instance Cover and Hart (1967); Altman (1992). The efficiency

and simplicity of KNN methods have contributed to their widespread use, espe-

cially in high-dimensional spaces where they can adapt without requiring a priori

assumptions about the data distribution.

In contrast, fuzzy nearest neighbour (FNN) techniques expand upon the traditional

nearest neighbour methodology by incorporating the concept of partial member-

ship and uncertainty. Instead of treating the neighbours of a data point as hav-

ing equal weighting, fuzzy approaches assign degrees of membership to neighbours

based on their proximity to the query instance. This allows for a more nuanced ag-

gregation of outputs, accommodating the inherent uncertainty in real-world data

(Keller and et al. (1985); Atkinson and Tatnall (1998)). FNN is particularly

beneficial in scenarios where the boundaries between classes are not well-defined,

providing a more flexible framework for regression tasks.

The integration of fuzziness into the nearest neighbour paradigm serves to enhance

prediction accuracy, especially in datasets characterized by noise and overlapping
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class distributions. This dual approach of standard NN and its fuzzy counter-

part is pivotal in various applications, including pattern recognition, time series

forecasting, and decision-making, positioning these methods as essential tools in

contemporary data analysis frameworks Michalski and et al. (1983).

Nearest neighbour regression is extensively used for predictive modeling in various

domains, including finance, marketing, and biology. Its ability to model non-linear

relationships makes it a popular choice in regression analysis (Cleveland (1979)).

In fields such as environmental science and geography, Wackernagel Wackernagel

(2003) used KNN regression to predict phenomena based on spatially distributed

data points, facilitating better spatial decision-making. NN techniques are em-

ployed in recommendation systems where the goal is to predict user preferences

based on the behaviors of similar users or items Linden and et al. (2003). Fuzzy

nearest neighbour regression is utilized in contexts where data is imprecise or

uncertain. Keller et al. Keller and et al. (1996) applied FKNN in medical diag-

nostics, where symptoms and test results may not have clear delineations.

Similar to K-NN classification (or any other prediction method), K-NN regression

has both advantages and disadvantages. Here is a list of some:

• Advantages: The method is simple and easy to understand. It does not

rely heavily on assumptions about the data’s structure and is effective in

handling non-linear connections, meaning it can handle relationships that

are not straight lines.

• Limitations: The model’s performance decreases significantly as the train-

ing data size increases. Additionally, the model may not work well when

there are a large number of predictors, and it may not accurately predict

values that are outside the range of values used in the training data.

Despite the advancements in FKNN, a critical gap remains in the adaptability of

distance measures to diverse data structures and decision-making contexts. Ex-

isting FKNN methods often rely on fixed distance metrics (e.g., Euclidean or

Diamond distance), which may not optimally capture the variability in fuzzy data

representations or decision-maker preferences. Our study addresses this limitation

by introducing a parametric distance measure that allows dynamic adjustment

based on the problem’s requirements. This innovation empowers decision-makers

to fine-tune the similarity assessment at different granularity levels, enhancing

flexibility in both classification and regression tasks. By bridging this gap, our

approach improves the interpretability and precision of FKNN, particularly for

fuzzy numbers with non-uniform spreads or asymmetric shapes (e.g., LR-type or

trapezoidal fuzzy numbers).

In this article, the nearest neighbour algorithm is used in classification and re-



222 Z. Behdani & M. Darehmiraki

gression of fuzzy numbers. For this purpose, we have used different metrics; the

results show that according to the nature of this algorithm, the results are con-

stant for all these metrics. The rest of the article is as follows: First, in the second

chapter, we introduce the general concepts of the article, such as fuzzy sets and

fuzzy numbers. In the third chapter, we describe the nearest neighbour algorithm.

We also explain the application of this algorithm in classification and regression.

In the final part, we show the concepts presented in the article numerically and

practically by mentioning numerical examples.

2. Preliminaries of Fuzzy Arithmetic

A fuzzy number is a mathematical abstraction that broadens the notion of a con-

ventional number by including elements of ambiguity or imprecision. The domains

of fuzzy analysis and interval analysis often employ this technique, effectively us-

ing it as a supportive premise for interval analysis. Fuzzy numbers have found

use in several domains, including artificial intelligence techniques such as neural

networks and quantum neural networks, with the aim of enhancing computational

efficiency and precision in handling intricate and unpredictable datasets. Fuzzy

equations and option pricing issues have been effectively addressed via their uti-

lization, offering a meticulously organized synopsis and paving the way for novel

prospects within the realm of fuzzy mathematics. Fuzzy numbers also have the

ability to generalize to include a partially ordered set, such as a lattice, making

them useful in fields such as cognitive mapping and expert evaluations.

Definition 2.1. A fuzzy number M is a convex normal set of real numbers R
such that:

1. There is only one x0 ∈ R for which µM (x0) = 1.

2. The function µM is a continuous linear piecewise function.

Definition 2.2. A fuzzy number M is called of type LR if there are functions L

(for the left side) and R (for the right side), and numbers α > 0 and β > 0 such

that

µM (x) =

L
(
m−x
α

)
, x ≤ m,

R
(
x−m
β

)
, x ≥ m.

Here, m is called the middle and is a real number, and α and β are the left and

right widths, respectively. Symbolically, M is represented as (m,α, β)LR, and L

and R are called reference functions. Various functions are used as L and R, the
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most famous of which are:

L(x) = max{0, (1− x)p}, L(x) = e−x, L(x) = e−x
2

.

These functions can also be used as R(x).

As algebraic operators are defined on ordinary numbers, these operations on

fuzzy numbers LR can also be defined as follows:

Definition 2.3. If M and N are two fuzzy numbers in the form of M = (m,α, β)LR

and N = (n, γ, δ)LR then

1. (m,α, β)LR ⊕ (n, γ, δ)LR = (m+ n, α+ γ, β + δ)LR.

2. (m,α, β)LRΘ(n, γ, δ)LR = (m− n, α− δ, β − γ)LR.

3.

λ⊗ (m,α, β)LR =

(λm, λα, λβ)LR, λ > 0,

(λm,−λβ,−λα)LR, λ < 0.

2.1 Fuzzy number

Fuzzy numbers are a generalized form of real and ordinary numbers that include

a range of possible values instead of referring to a specific value. The membership

degree refers to the weight of each possible value, which ranges from 0 to 1. Fuzzy

numbers are a special type of fuzzy set. Therefore, by understanding the concept

of fuzzy sets, you can easily learn fuzzy numbers. In classical logic, every number

is a definite value, but in fuzzy logic, every number is an approximate value. A

fuzzy number is a fuzzy set with the following triple conditions:

• It is normal.

• It is convex.

• Its support set is limited.

People have proposed and used a wide variety of fuzzy numbers with different

names and properties. But an important principle in applying fuzzy theory is

its computational efficiency. Working with different fuzzy values presents many

challenges. To solve this problem, Dubois and Prade Dubois and Prade (1990) in-

troduced ”right and left” fuzzy numbers known as LR numbers. Later, triangular

and trapezoidal fuzzy numbers were introduced, which have high computational

efficiency.
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Figure 1: An example of a triangular fuzzy number

Three real numbers, F = (l,m, u), represent a triangular fuzzy number (TFN).

The upper limit indicated by u is the maximum value that the fuzzy number F

can take. The lower limit indicated by l is the minimum value that the fuzzy

number F can take. m is the most probable value of a fuzzy number. The degree

of fuzzy membership, or the membership function of a triangular fuzzy number,

can be expressed as follows:

µF (x) =

 x−l
m−l , l ≤ x ≤ m,
u−x
u−m , m ≤ x ≤ u.

In geometric space, the triangular fuzzy number F = (l,m, u) is displayed as

Figure 1.

According to the membership function of triangular numbers, it is clear that if

x is between l and m, then the larger it is, the larger its membership degree will

be, until the degree of membership is equal to one for x = m. If x is between m

and u, the larger it is, the smaller the degree of membership will be, and at x = u,

the degree of membership will be zero. F = (l,m1,m2, u) represents a trapezoidal

fuzzy number. The trapezoidal fuzzy number membership function is defined as

follows:

µF (x) =


x−l
m1−l , l ≤ x ≤ m1,

1, m1 ≤ x ≤ m2,

u−x
u−m2

, m2 ≤ x ≤ u.

Figure 2 shows a geometric representation of a trapezoidal fuzzy number.
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Figure 2: A sample trapezoidal fuzzy number

2.2 Comparison of Triangular and Trapezoidal Fuzzy Num-

bers in FKNN

Triangular fuzzy numbers (TFNs) and trapezoidal fuzzy numbers (TrFNs) are

widely used in FKNN due to their computational efficiency and interpretability,

but they differ in flexibility and applicability:

1. Representation:

• A TFN F = (l,m, u) encodes a single ”most probable” value (m) with

linear membership decay toward the lower (l) and upper (u) bounds.

This simplicity makes TFNs suitable for symmetric, unimodal uncer-

tainty.

• A TrFN F = (l,m1,m2, u) generalizes TFNs with a plateau of max-

imum membership between m1 and m2, accommodating intervals of

equal plausibility (e.g., expert-defined ranges).

2. Relevance in FKNN:

• TFNs are ideal for problems where uncertainty peaks at a single point

(e.g., sensor readings with Gaussian-like noise). Their compact form

simplifies distance computations (e.g., Equation 3.1).

• TrFNs better model scenarios with imprecise intervals (e.g., ”approx-

imately 5 to 7 units”) or multi-source consensus (e.g., aggregated ex-

pert opinions). The plateau allows FKNN to weigh neighbors more

uniformly across the interval.

3. Trade-offs:
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• TFNs require fewer parameters (3 vs. 4 for TrFNs), reducing compu-

tational overhead in large datasets.

• TrFNs offer richer representations but may introduce redundancy if the

plateau is negligible (i.e., m1 ≈ m2).

In FKNN, the choice between TFNs and TrFNs hinges on data characteristics:

TFNs suffice for sharp, unimodal uncertainty, while TrFNs excel in capturing

graded or multi-modal ambiguity (see Examples 5.1 and 5.2).

3. Fuzzy KNN

Nearest Neighbor Search, also known as proximity search, similarity search, or

nearest point search, is an optimization problem for finding the closest points in

metric spaces. The problem is as follows: The set S contains a number of points

in a metric space such as M and a point q ∈ M is given. The goal is to find

the closest point in S to q. Often, the space M is a d-dimensional Euclidean

space, and we measure the distance between points using the Euclidean distance,

Manhattan distance, or other metric distances. K-nearest neighbor search returns

the K nearest neighbors to the query point. Predictive analysis typically uses this

method to estimate or categorize a point based on the consensus of its neighbors.

To use the fuzzy KNN method for LR-type fuzzy numbers, it is necessary

to have an appropriate distance measure. Consider two LR-type fuzzy numbers,

A = (a, la, ra) and B = (b, lb, rb), where a and b represent their modal points, la

and lb represent their left spreads, and ra and rb represent their right spreads.

The diamond distance can be defined in the following way:

D2
0(A,B) = (a− b)2 + (la − lb)2 + (ra − rb)2, (3.1)

The following is an example of a distance measurement that Yang and Ko Yang

and et al. (1996) suggested between A and B:

D2
1(A,B) = 3(a− b)2 + L2

0(la − lb)2 +R2
0(ra − rb)2 + 2(a− b)

×
(
R0(ra − rb)− L0(la − lb)

)
, (3.2)

where L0 =
∫ 1

0
L−1(w) dw and R0 =

∫ 1

0
R−1(w) dw. Diamond and Körner Dia-

mond and Korner (1997) defined another distance measure between A and B as

follows:

D2
2(A,B) = (a− b)2 + L2(la − lb)2 +R2(ra − rb)2 + 2(a− b)

×
(
R1(ra − rb)− L1(la − lb)

)
, (3.3)
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Algorithm 1: Classification by KNN algorithm

1. Data loading

2. Determine the value of K, which is the number of nearest neighbors.

3. For each data sample:

• Calculate the distance between the new data sample and the existing

data samples.

• Enter the distance and index of each sample into a list.

4. Sort the entire list based on the distance of the data samples, from the

smallest to the largest distance.

5. The first K samples in the sorted list are selected as the K nearest

neighbors.

6. Check the label of these K samples.

7. If it is a regression problem, the average of the labels of these K data

samples will be the label of the new data sample.

8. If it is a classification problem, the new sample will have the same label as

the majority of the K neighbors.

where L1 = 1
2

∫ 1

0
|L−1(w)| dw, R1 = 1

2

∫ 1

0
|R−1(w)| dw, L2 = 1

2

∫ 1

0
|L−1(w)|2 dw.

Darehmiraki Darehmiraki (2019) proposed the following parametric distance be-

tween fuzzy numbers A and B:

D2
3(A,B) =

∫ α

0

[(a− laL−1(w))− (b− lbL−1(w))]2dw

+

∫ α

0

[(a+ raR
−1(w))− (b+ rbR

−1(w))]2dw

(3.4)

For two trapezoidal fuzzy numbers A = (al, am, au, ar) and B = (bl, bm, bu, br),

the Diamond distance is defined as:

D2(A,B) = (al − bl)2 + 0.5(am − bm)2 + 0.5(au − bu)2 + (ar − br)2, (3.5)

The KNN algorithm heavily relies on the distance function, and as various distance

functions generate neighborhoods with varying shapes, they significantly influence

the selection of a sample class. Therefore, it is crucial to test various distance

functions and select the most effective one.
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Algorithm 2: K-nearest Neighbors Regression

1. Select K, the number of neighbors.

2. Calculate the Euclidean distance to the K nearest neighbors.

3. Take the K nearest neighbors as per the calculated Euclidean distance.

4. Count the number of data points in each category among these K

neighbors.

5. The new data point is assigned to the category with the maximum number

of neighbors.

3.1 Methodology

The KNN algorithm heavily depends on the chosen distance function. Since dif-

ferent distance functions result in neighborhoods with varying shapes, they can

significantly impact the classification of samples. Therefore, it is essential to test

multiple distance functions and select the one that yields the best performance.

Algorithm 3: Classification by KNN algorithm

1. Determine the parameter k, the number of nearest neighbors.

2. Calculate the distance between the input sample and all training samples.

3. Sort training samples based on distance and select k nearest neighbors.

4. Assign the class that has the majority in the nearest neighbors as an

estimate for the class of the input sample.

To further elucidate the FKNN process, Figure 3 provides a flowchart sum-

marizing the key steps for both classification and regression tasks. The algorithm

begins by computing fuzzy distances between the test instance and training data,

selects the K-nearest neighbors, and branches based on the task type. For clas-

sification, it aggregates fuzzy memberships, while regression employs weighted

averaging of neighbor outputs. This visual guide complements the pseudocode by

highlighting decision points and task-specific operations.
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Algorithm 4: Pseudocode for Fuzzy K-Nearest Neighbor Algorithm

Input : Training data Dtrain, test instance xtest, K, d(·, ·)
Output: Predicted label or value

1 for each (xi, yi) ∈ Dtrain do

2 Compute d(xtest, xi);

3 Store (di, yi) in S;

4 end for

5 Sort S by di;

6 NK ← top K entries from S;

7 if task is classification then

8 Assign xtest to majority class in NK ;

9 else

10 Predict ŷ = 1
Z

∑K
i=1

yi
1+di

;

11 end if

Figure 3: Flowchart of Fuzzy K-Nearest Neighbor (FKNN) for Classification and Regression
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4. Computational Complexity of FKNN

The FKNN algorithm involves the following key steps, each contributing to its

computational cost:

• Operation: Calculate distances between the test instance and all training

instances using a fuzzy distance metric (e.g., Diamond distance, Yang-Ko

distance).

• Complexity:

For N training instances and d-dimensional features:

1. Non-fuzzy data: O(N · d) (standard KNN).

2. Fuzzy data: Each dimension is represented by parameters (e.g., trian-

gular: (l,m, u)). Distance metrics like Equation 3.1–3.5 require com-

putations over these parameters.

3. Worst-case: O(N ·d · p), where p is the number of parameters per fuzzy

number (e.g., p = 3 for triangular).

For neighbor selection:

• Operation: Sort distances to find K-nearest neighbors.

• Complexity: O(N logN) (due to sorting).

Membership Aggregation (Classification) or Weighted Averaging (Regression)

Operation:

• Classification: Compute fuzzy membership degrees for each class (Equation

3.6).

• Regression: Weighted average of neighbors’ fuzzy outputs.

• Complexity: O(K · c) for classification (where c is the number of classes) or

O(K · p) for regression (aggregating fuzzy numbers).

For total complexity, we have

O(N · d · p) +O(N logN) +O(K · c or p)

Dominated by distance computation (O(N · d · p)) and sorting (O(N logN)).
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4.1 K-nearest Neighbors Regression

Similar to classification, regression is a predictive problem where we aim to apply

past knowledge to forecast future observations. Nevertheless, when it comes to re-

gression, the objective is to make predictions about numerical values rather than

categorical values. People often use the term ”response variable” to refer to the

variable they want to predict. We are able to produce predictions in regression by

using a K-nearest neighbors-based strategy, which is quite similar to the approach

we use in classification. By averaging nearby data, the KNN regression method

(a non-parametric approach) simply approximates the association between inde-

pendent variables and the continuous result. Either the analyst has to know how

big the neighborhood is, or they can use cross-validation to find out what size

neighborhood produces the best mean-squared error.

KNN Regression is characterized by its ease of implementation and comprehen-

sibility, although it may provide computational challenges, particularly for large

datasets, due to the need to compute distances between the new data point and all

preexisting data points. Moreover, the selection of an optimal value for K and a

suitable distance measure may significantly influence the accuracy of the forecasts.

Cross-validation and hyperparameter tweaking may assist in selecting appropriate

values for K and the distance measure. In the field of regression analysis, the K-

Nearest Neighbors algorithm is often known as ”KNN Regression” or ”K-Nearest

Neighbors Regression”. Here’s a concise explanation of how KNN regression works:

• Data Collection: The first dataset consists of input characteristics and cor-

responding goal values. In regression tasks, the target values are continuous

and serve as the desired output that you want to forecast.

• Calculating the Optimal Number of Neighbors (K): To produce predictions,

you must choose the value of K, which represents the number of closest

neighbors to consider. You can adjust this hyperparameter based on the

specific attributes of your data. A low value of K (e.g., 1 or 3) may result

in forecasts that are noisy, while a high value of K can result in predictions

that are excessively smoothed.

• KNN uses a distance metric, such as the Euclidean distance, to quantify the

similarity between data points. Depending on the characteristics of your

data, you may use various distance measures.

• Prediction: To produce a prediction for a new input data point, the KNN

algorithm computes the distance between this point and all other data points

in the dataset. Next, it chooses the K data points that have the shortest

distances.
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• Regression Prediction: Regression determines the projected value of a new

data point by averaging the target values of its K closest neighbors. This

might be a basic calculation of the average. Another option is to use the

weighted average of this data, which translates into the following calcula-

tions:

Ŷ =

k∑
i=1

(wiYi)

where wi =

1

Disi∑k
i=1

1

Disi

In this article, we use the following criteria to assess the goodness of fit and

the model’s error rate:

S =
1

n

n∑
i=1

∫
min{ŵi(t), ˜̂wi(t)}dt∫
max{ŵi(t), ˜̂wi(t)}dt

, (4.6)

E1 =
1

n

n∑
i=1

∫
|ŵi(t)− ˜̂wi(t)|dt,

E2 =
1

n

n∑
i=1

∫
|ŵi(t)− ˜̂wi(t)|dt∫

ŵi(t)dt
.

S is a similarity measure, and the closeness of this measure to one indicates a high

similarity between the fitted data and the real data. The other two criteria are

measures of error, and the smaller they are, the better the model.

4.2 Optimal K Value

For better results, it is essential to choose the right value of K, a process known

as parameter tuning. To choose the value of K, we calculate the square root, or

radical, of the total number of data points in the dataset. We always choose an

odd value of K to prevent confusion between the two classes.

5. Numerical example

In this section, we present two numerical examples and one practical example to

demonstrate the effectiveness of the proposed method. We examine two sets of

fuzzy numbers, each with 5 and 6 members, in the two numerical examples. In

order to check the effectiveness of the proposed nearest neighbour algorithm, we

first cluster the data using one of the HFCM or MVFCM Yang and et al. (2006);

Hathaway and et al. (1996) methods or the parametric method of reference
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Farnam and Darehmiraki (2023). Then we use the proposed KNN method to

determine the data class in question.

Example 5.1. We consider a dataset with five triangular fuzzy numbers. These

data and their classification into two groups by methods MV FCM and H FCM

are recorded in Table 1.

Table 1: Triangular fuzzy numbers in Example 5.1 and their classification in two

ways: MV FCM and H FCM .

MVFCM H FCM

Fuzzy data

u1k u2k u1k u2k

A = (−1, 0, 1) 0.6121 0.3879 0.9666 0.0334

B = (−3, 0, 3) 0.7022 0.2978 0.6620 0.3380

C = (−5, 0, 5) 0.8337 0.1663 0.1744 0.8256

D = (−1, 2, 5) 0.3092 0.6908 0.3153 0.6847

E = (−1, 4, 9) 0.2132 0.7868 0.1234 0.8766

Suppose we have new fuzzy data F = (−1, 1, 2) (Figure 4 shows a picture of the

data in Table 1 and the new data F = (−1, 1, 2)), and we want to know to which of

the clusters this new data belongs. To achieve this goal, we must first calculate the

distance between this new data and all existing data. These distances, calculated

using each of the relationships 3.2, 3.3, and 3.4, are recorded in Table 2. Once

we have calculated the distances for all data points, we arrange them in order,

identifying the k nearest neighbors with the shortest distances. As is clear in Table

2, although the values of the distances calculated by different methods are different,

their rankings are the same for all these methods. Based on the closest distance

to point F , the data in Table 1 are arranged as follows:

A, B, D, C, andE

As can be seen, if k = 2, the closest points to point F are A and B, and these

two points belong to the first group. Among the 2 nearest neighbors, both belong to

class 1; therefore, F belongs to class 1.

As shown in Table 2, although the size of the distance between each point and

point F = (−1, 1, 2) changes with different metrics and their magnitudes are not

the same across all formulas, the order of these distances is the same. In other

words, if we rank them from smallest to largest, the rank of each point does not

change with each metric, and the rank of each point is the same for all these

metrics.
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Table 2: Distance of the new data (F = (−1, 1, 2)) to any of the existing data

using different metrics in Example 5.1

Fuzzy data Diamond D1 D2 D3(α = 0.25) D3(α = 0.5) D3(α = 0.75) D3(α = 1)

A = (−1, 0, 1) 1.4142 1.5 0.8165 0.5052 0.736 0.9437 1.1547

B = (−3, 0, 3) 2.4495 1.803 1.1547 1.0129 1.307 1.4843 1.633

C = (−5, 0, 5) 5.099 2.87 2.1602 2.2091 2.7462 2.9607 3.055

D = (−1, 2, 5) 2.4495 2.29 1.5275 1.3788 1.7911 2.0194 2.1602

E = (−1, 4, 9) 5.8309 6.02 3.8297 3.26 4.31 4.9513 5.4160
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Figure 4: Triangular fuzzy numbers in Table 1 and F = (−1, 1, 2) fuzzy number in Example

5.1

Example 5.2. In this example, we use six trapezoidal fuzzy numbers. These fuzzy

numbers and their classification in two methods, MV FCM and H FCM , are

presented in Table 3.

In this example, we would like to place point G = (0.5, 1.5, 2.5, 5.5) in one of

these two groups using the k nearest neighbor method. Considering that the ranking

of the data is the same based on all the metrics, we only calculated the distances

to point G using the Diamond metric, and they are recorded in Table 4. An image

of these fuzzy numbers is shown in Figure 5, where you can see how these numbers

are arranged in the figure.

Now, if we sort the data in Table 3 based on the closest distance to the fuzzy

number G = (0.5, 1.5, 2.5, 5.5), we can arrange them as follows:

E, D, A, B, F, C

Given that k = 3, the closest points to the data G are E, D, and A, of which E

and D belong to group 2 and A to group 1. Therefore, based on the three nearest

neighbors, we assign G to group 2.

Example 5.3. This example is a practical example of clustering cars based on

three attributes: price, comfort, and safety Coppi and et al. (2012). Considering
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Table 3: Trapezoidal fuzzy numbers in Example 5.2 and their classification into

two groups using methods MV FCM and H FCM .

MVFCM H FCM

Fuzzy data u1k u2k u1k u2k

A = (−1, 1, 1, 3) 0.973 0.0266 0.8060 0.1940

B = (−3, 1, 1, 5) 0.9721 0.0279 0.9405 0.0595

C = (−3, 0, 0, 3) 0.9690 0.0310 0.9603 0.0397

D = (2, 3, 5, 6) 0.0231 0.9769 0.0527 0.9473

E = (1, 3, 5, 7) 0.0078 0.9922 0.0076 0.9924

F = (−2, 2, 4, 8) 0.1134 0.8866 0.5392 0.4608

Table 4: Distance between the data in Table 3 and point G = (0.5, 1.5, 2.5, 5.5) in

Example 5.2 using the Diamond metric.

Fuzzy data Diamond

A = (−1, 1, 1, 3) 3.1225

B = (−3, 1, 1, 5) 3.7081

C = (−3, 0, 0, 3) 4.7697

D = (2, 3, 5, 6) 2.5981

E = (1, 3, 5, 7) 2.5981

F = (−2, 2, 4, 8) 3.7081

that the price of a car is a quantitative parameter, we display it with a definite

number, but we use trapezoidal fuzzy numbers to display the other two parameters.

Table 5 shows the value of each of these three characteristics for different cars.

According to the data in Table 6, the Aston Martin, Mitsubishi Lancer, Tira Ativa,

Toyota Tercel, and Nissan Micro cars belong to cluster 1, and the rest belong to

cluster 2.

Now suppose we have the Fiat 128 car with the following specifications (Fiat

128 Price = (−3.64, 0, 0, 3.64), Convenience = (−16,−1, 1, 13) and Safety =

(−11.5, 1, 3, 15.5)). We would like to place this car with these features in one of

the groups in Table 6. Similar to before, we first calculated the distances for each

of the data in Table 5 and recorded them in Table 7. Now, if we arrange these

data, we will see that the Toyota Tercel, Nissan Micro, Tira Ativa, and Mitsubishi

Lancer have the least distance with the Fiat 128, respectively. On the other hand,

these data are in groups 1, 1, 1 and 2, so we put the Fiat 128 car in group 1.

Example 5.4. Table 8 is an example where the inputs and outputs are all TriFN,

and the example data is taken from Table 3 in Sakawa (1992) Sakawa (1992).
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Figure 5: Trapezoidal fuzzy numbers in Table 3 and G = (0.5, 1.5, 2.5, 5.5) fuzzy number in

Example 5.2

Table 5: Data on the characteristics of 10 cars

Type of car Price Convenience Safety

Aston Martin (−9.63, 0, 0, 9.63) (−9, 1, 3, 13) (−7.5, 1.5, 4.5, 13.5)

Mitsubishi Lancer (−9.51, 0, 0, 9.51) (−5, 1, 3, 9) (−4.5, 1.5, 4.5, 10.5)

Mitsubishi Galant (−8.71, 0, 0, 8.71) (−15,−1, 1, 11) (−6.67,−1.5, 1.5, 6.62)

Tira Ativa (−9.46, 0, 0, 9.46) (−5, 1, 3, 9) (−4.5, 1.5, 4.5, 10.5)

M2000 (−6.64, 0, 0, 6.64) (−7, 1, 3, 11) (−7.5, 1.5, 4.5, 13.5)

Toyota Tercel (−8.45, 0, 0, 8.45) (−4, 2, 2, 4) (−4.5, 1.5, 4.5, 10.5)

Toyota Corolla (−3.74, 0, 0, 3.74) (−15,−1, 1, 11) (−10.5, 1.5, 4.5, 16.5)

Toyota Prius (−9.72, 0, 0, 9.72) (−9, 1, 3, 13) (−6.67,−1.5, 1.5, 6.62)

Nissan Laurel Al-

tima

(−9.69, 0, 0, 9.69) (−7, 1, 3, 11) (−10.5, 1.5, 4.5, 16.5)

Nissan Micro (−9.39, 0, 0, 9.39) (−4, 2, 2, 4) (−2.5, 3, 3, 8)

Table 10 shows the estimated values using the K-nearest neighbor method (with

different values of K). This method estimates the value of the dependent variable

Y for the independent variable X. Figure 1 also shows a picture of observed values

and estimated values for different values of K.

Now suppose we want to predict the value of Y for X1 = (6, 1)T . For this

purpose, we first calculate the distance of point X1 from all available points. These

values are recorded in Table 10. As you can see, points 3, 4, 5, and 2 are the closest

to point X. Therefore, using these values and k = 4, the value of Ŷ is equal to

(7, 0.75). It is also possible to use the weighted average of these data, resulting in

an estimate of (7.14, 0.82). If we apply the least squares method to fit the regression
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Table 6: Classification of the data in Table 5 by Farnam and Darehmiraki (Farnam

and Darehmiraki , 2023) method

Type of Car Cluster 1 (α = 0.3) Cluster 2 (α = 0.3)

Aston Martin 0.5425 0.4575

Mitsubishi Lancer 0.6749 0.3251

Mitsubishi Galant 0.3325 0.6675

Tira Ativa 0.7059 0.2941

M2000 0.4595 0.5405

Toyota Tercel 0.6893 0.3137

Toyota Corolla 0.3485 0.6515

Toyota Prius 0.3335 0.6665

Nissan Laurel Altima 0.2646 0.7354

Nissan Micro 0.6266 0.3734

Table 7: Distance between Fiat 128 and cars in Table 5

Type of Car Price Convenience Safety Distance

Aston Martin 8.4711 21.7543 4.6098 23.7962

Mitsubishi Lancer 8.3014 17.5285 8.6747 21.2465

Mitsubishi Galant 7.17 17.6983 10.3166 21.7042

Tira Ativa 8.2307 17.5285 8.6747 21.2189

M2000 4.2426 20.6700 4.6098 21.5986

Toyota Tercel 6.8024 14.8745 8.6747 18.5141

Toyota Corolla 0.1414 21.5232 1.8028 21.5991

Toyota Prius 8.5981 20.9740 10.3167 24.9053

Nissan Laurel Al-

tima

8.556 23.3934 1.8028 24.9741

Nissan Micro 8.1317 13.8293 11.8004 19.9154

Table 8: Sample data and the estimated value in 5.4.

No. X Y

1 (2; 0.5)T (4.5, 0.5)T

2 (3.5; 0.5)T (5.5, 0.5)T

3 (5.5, 1)T (7.5, 1)T

4 (7, 0.5)T (6.5, 0.5)T

5 (8.5, 0.5)T (8.5, 1)T

6 (10.5, 1)T (8, 1)T

7 (11, 0.5)T (10.5, 0.5)T

8 (12.5, 0.5)T (9.5, 0.5)T

model, we will obtain the following model:

y = (3.85, 0.17)T + (0.49, 0.83)T ∗ x.

Using this line, the fitted values have been calculated and recorded in Table 12.
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Figure 6: The membership function of the different characteristics of the data

machines in Table 5.

The results show that in this particular case, the least squares method performs

better than the nearest neighbor method. In this example, the results showed that
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Table 9: The fitted values of Table 8 using the K-nearest neighbor method for

different values of K

K = 3 K = 5 K = 7

No. X Ordinary Weighted Ordinary Weighted Ordinary Weighted

1 (2; 0.5)T (6.5, 0.67)T (6.17, 0.62)T (7.2, 0.8)T (8, 0.71)T (7.01, 0.67)T (6.15, 0.59)T
2 (3.5; 0.5)T (6.17, 0.67)T (5.92, 0.67)T (7, 0.8)T (7.86, 0.71)T (6.81, 0.71)T (6, 0.68)T
3 (5.5, 1)T (6.83, 0.67)T (6.61, 0.61)T (6.6, 0.7)T (7.57, 0.64)T (6.96, 0.62)T (6.57, 0.58)T
4 (7, 0.5)T (7.17, 0.83)T (7.56, 0.91)T (8, 0.8)T (7.71, 0.71)T (7.8, 0.82)T (7.89, 0.91)T
5 (8.5, 0.5)T (8.33, 0.67)T (8, 0.66)T (8.4, 0.7)T (7.43, 0.64)T (7.67, 0.66)T (7.62, 0.66)T
6 (10.5, 1)T (9.5, 0.67)T (9.95, 0.59)T (8.5, 0.7)T (9.49, 0.61)T (7.5, 0.64)T (9.16, 0.6)T
7 (9, 0.83)T (8.67, 0.83)T (8.43, 0.88)T (8, 0.8)T (7.14, 0.71)T (8, 0.83)T (8.15, 0.93)T
8 (12.5, 0.5)T (9, 0.83)T (9.27, 0.76)T (8.2, 0.8)T (7.28, 0.71)T (8.43, 0.73)T (9.23, 0.7)T

Table 10: The distance of point X from the data in Table 8.

No. X D1 D2

1 (2; 0.5)T 6.9372 4.0104

2 (3.5; 0.5)T 4.3445 2.5166

3 (5.5, 1)T 0.8660 0.5

4 (7, 0.5)T 1.7678 1.0408

5 (8.5, 0.5)T 4.3445 2.5166

6 (10.5, 1)T 7.7942 4.5

7 (11, 0.5)T 8.6674 5.008

8 (12.5, 0.5)T 11.2638 6.5064

Table 11: Actual values and fitted values using the least squares method for the

data in Example 5.4.

No. X Y Ŷ

1 (2; 0.5)T (4.5, 0.5)T (4.83, 0.58)T

2 (3.5; 0.5)T (5.5, 0.5)T (5.56, 0.57)T

3 (5.5, 1)T (7.5, 1)T (6.54, 0.99)T

4 (7, 0.5)T (6.5, 0.5)T (7.28, 0.57)T

5 (8.5, 0.5)T (8.5, 1)T (8.01, 0.57)T

6 (10.5, 1)T (8, 1)T (8.99, 0.99)T

7 (11, 0.5)T (10.5, 0.5)T (9.24, 0.57)T

8 (12.5, 0.5)T (9.5, 0.5)T (9.97, 0.57)T

the least squares method performs better in the linear mode. We would like to

highlight the K-NN regression algorithm’s ability to function well with non-linear

connections, making it effective in situations where the relationship is not a straight

line. The algorithm uses the closest neighbors to make predictions about values. In

reality, the algorithm makes very few assumptions about the structure of the data
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Table 12: Some goodness-of-fit criteria for the two methods: nearest neighbor and

least squares for the data in Example 5.4.

Least Squares K = 3 K = 5 K = 7

Least Squares Ordinary Weighted Ordinary Weighted Ordinary Weighted

E1 0.1025 0.29 0.31 0.3 0.27 0.2925 0.3087

E2 0.1764 0.3972 0.4401 0.3951 0.4054 0.4179 0.4402

S 0.8628 0.6637 0.6485 0.6531 0.6764 0.6584 0.6530

it needs to function properly.

The K-NN regression method, much like the K-NN classification algorithm (or any

other prediction algorithm for that matter), boasts both strengths and flaws. Some

of them are listed below:

There are a number of strengths associated with the K-nearest neighbors regression

approach, including its simplicity and intuitiveness, its need for minimal assump-

tions on the appearance of the data, and its ability to operate well with non-linear

relationships (that is, relationships that are not linear). The K-nearest neighbors

regression has some drawbacks. It can become increasingly sluggish as the size of

the training data increases; it may not perform well with a high number of pre-

dictors; and it may not predict well outside the range of values supplied in the

training data. In regression, using the nearest neighbor is very useful, especially

when the regression model is unclear or there are outliers. All of these represent

potential risks associated with the prediction process.

Example 5.5. In order to better understand the capabilities of the proposed method,

in this example, Table 13 shows a comparison between the algorithm proposed in

this paper and the algorithm proposed in the paper Biswas and et al. (2018) for

3 datasets.

Table 13: Comparison between the proposed method and the PIFW method

Biswas and et al. (2018).

Dataset PIFW Proposed Method

Iris 95.56 97.78

Breast Cancer 96.14 97.08

Ionosphere 94.34 84.91

5.1 Comparative Analysis of Distance Metrics in FKNN

To evaluate how different distance metrics influence FKNN’s performance, we

compare the metrics defined in Section 3 (D0, D1, D2, and D3) using the datasets

from Examples 5.1 (TFNs) and 5.2 (TrFNs). Table 14 summarizes the results,

focusing on:
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1. Rank Consistency: All metrics preserve neighbor rankings (as noted in Ex-

amples 5.1–5.2), ensuring stable classification.

2. Computational Cost: Parametric metrics (e.g., D3) incur higher overhead

due to integral calculations but offer tunable precision.

3. Sensitivity to Spread: Metrics like D1 (Yang-Ko) penalize spread discrepan-

cies more aggressively than the Diamond distance (D0).

Table 14: Performance of FKNN under different distance metrics.

Metric Type Rank Consistency Sensitivity to Spread Best Use Case

Diamond (D0) Non-parametric High Low Symmetric TFNs/TrFNs

Yang-Ko (D1) Non-parametric High High Asymmetric LR-type numbers

Korner (D2) Non-parametric High Moderate Noisy or overlapping classes

Parametric (D3) Tunable High Adjustable (α) Customizable decision levels

6. Conclusion

Fuzzy k-nearest neighbor has several advantages and disadvantages. One advan-

tage is that FKNN takes advantage of the fuzzy dominance relation between in-

stances, which helps in constructing monotonic classifiers. This allows FKNN to

decrease the disturbance caused by noisy data and improve the selection range

of the nearest neighbors. Another benefit is that FKNN can effectively handle

datasets with class imbalances and outliers.

In this paper, we tried to improve the efficiency of the fuzzy nearest neighbor al-

gorithm by presenting a parametric distance measure and giving decision-makers

the power to solve their desired problem at the level of decision they want.

The fuzzy k-nearest neighbor algorithm is a classification approach that lever-

ages the fuzzy dominance connection between instances. We use this method to

develop monotonic classifiers, accounting for the degrees of fuzzy dominance con-

nection between pairs of cases, especially those instances that are not comparable

to each other. The method aims to minimize noise data disruption, which could

potentially affect the selection range of the k-nearest neighbors. Modifying the

thresholds of the fuzzy dominance relation degrees accomplishes this. We will

investigate regression trees, splines, and general local regression techniques with

fuzzy data using KNN in the course of our future studies.
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