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Abstract: In the modern era, detecting credit card fraud has become a crucial

concern from both financial and security standpoints. Given the rarity of fraud-

ulent activities, the issue is reframed as a binary classification challenge, tackling

the complexities of imbalanced datasets. To address this, the authors advocate

using Bayesian networks due to their theoretical robustness and capacity to model

intricate scenarios while maintaining interpretability in the context of class-skewed

distributions. A pivotal component of this meta-learning framework is the cost

matrix, leading the authors to explore various techniques for its calculation. By

employing our meta-learning framework with data from Iran’s banking system,

the authors demonstrate a method for determining the cost matrix. Subsequently,

they develop the corresponding Cost Augmented Bayesian Network Classifiers,

called CABNCs. The outcomes highlight the potential of CATAN to diminish

financial loss and the effectiveness of CAGHC-K2 in predicting labels for forth-

coming transactions in the context of class imbalance.
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1. Introduction

In recent years, particularly following the Covid-19 pandemic, the usage of credit

cards as a fast mechanism for money transferring has greatly expanded. Along

with this, increasing criminal usage of the card has become a new concern for

financial and economic businesses.

The Iranian National Tax Administration suspects income-related transactions

with no transparent source of acquisition and unpaid tax status. Banking and

credit systems consider transactions originating from illegal activities and sus-

pected of money laundering to be fraudulent and criminal. Visual and manual

inspections to identify criminal and illegal activities besides their corresponding

transactions are inaccurate, costly, and time-consuming. With the advent of ar-

tificial intelligence, it has become possible to utilize machine learning-based algo-

rithms to analyze credit card transaction data to detect illegal financial behaviors.

Depending on the amount of money being transferred, an ”account turnover

tax” is deducted from the source account during the transaction. If an illicit trans-

action is carried out without detection, the banking institution may incur financial

losses. Additionally, the number of suspicious transactions is quite low. As a re-

sult, these financial transactions provide a highly skewed and imbalanced data set.

Accepting fraudulent transactions as legitimate is more costly than inaccurately

detecting legal transactions as fraudulent, as the former results in a higher eco-

nomic loss for the financial institution and requires cost reimbursement. Finding

a solution for the rapid identification of transactions resulting from criminal ac-

tivities, while also taking into account the imbalanced nature of the data along

with the sensitivities of the evaluation criteria to errors caused by false transaction

detection, is regarded as an important issue.

Many authors have investigated the issue of detecting unauthorized or illegal

transactions. The most prevalent type of unlawful financial and banking behavior,

identified using machine learning approaches, is the unauthorized and criminal

usage of bank cards. This topic has been addressed using a range of strategies,

including supervised, unsupervised, deep learning, and ensemble methods.

Among the supervised techniques, Naive Bayesian approaches (Singh and Ran-

jan and Tiwari , 2021), decision trees and random forests (Seera and et al. , 2024),

and Bayesian belief networks (Kumar and Mubarak and Dhanush , 2020) have

gotten the greatest attention. Two of the most recent unsupervised approaches

used to identify fraud are the hidden Markov model (Lucas and et al. , 2020) and

the local outlier factor (LOF) (Prusti and Das and Rath , 2021).

Scholars have developed a variety of methods in recent years to provide effective

solutions for credit card fraud detection, including ensemble learning methods such

as XGBoost (XG), CatBoost (CB), and gradient boosting algorithms (Gamini and
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et al. , 2021), as well as deep learning techniques such as artificial neural networks

(ANN) (Asha and SureshKumar , 2021).

According to the literature, strategies for addressing the issue of fraud detec-

tion could be divided into two broad categories. One approach, given that such

activities are uncommon, addresses the issue using anomaly detection techniques

(Halvaiee and Akbari , 2014). In contrast, the other group views fraud detection

as the problem of categorizing transactions as legal or illegal, and they seek an

adequate algorithm for binary classification (Hens and Tiwari , 2012). Following

the second group, this paper investigates credit card fraud detection using a binary

classification task.

Caldeira and et al. (2012) employed artificial neural networks and random

forests to detect fraudulent online transactions. De Sá and et al. (2018) ex-

plored imbalance by assigning different misclassification costs to distinct classes.

Fu and et al. (2016) used a convolutional neural network (CNN) to identify

hidden patterns in each transaction. They used a cost-based sampling method

to address the issue of imbalanced data, creating synthetic fraudulent samples

from real ones. Sahin and et al. (2013), as pioneers in the use of cost-sensitive

approaches, developed a cost-sensitive decision tree algorithm that preserved the

imbalanced distribution of classes through stratified sampling during the model

learning phase. To overcome the imbalance, De Sá and et al. (2018) employed an

undersampling technique in combination with two classification algorithms. They

developed FRAUD-BNC, a customized Bayesian Network Classifier (BNC), using

a hyper-heuristic evolutionary algorithm (HHEA).

Several works have addressed the challenge of fraud detection ((Van Vlasselaer

and et al. , 2015); (Dal Pozzolo and et al. , 2014)). Unfortunately, most real-world

financial fraud datasets suffer from a severe class imbalance issue, where the fraud

data’s proportion is significantly lower than that of non-fraud. In binary classifica-

tion, class imbalance often leads to biased predictions favoring the majority class

Johnson and Khoshgoftaar (2019). Consequently, the classifier’s performance on

the minority class is compromised, especially when encountering dissimilar frauds.

Overcoming this problem poses a significant challenge, as classifiers are expected

to achieve high precision and recall in the fraudulent class.

Fernández and et al. (2018) present a great review of the methods to overcome

imbalanced data. Most literature has focused on improving statistical metrics to

evaluate predictive performance. Lots of imbalanced data dealing approaches have

been proposed at either the data or algorithm levels. Data-level is usually based

on re-sampling methods, which mainly include increasing the number of minority

examples by generating synthetic examples (over-sampling) (Cateni and et al. ,

2014), decreasing the number of majority examples by removing some of them
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(under-sampling) (Brown and Mues , 2012), and synthetic minority oversampling

technique (SMOTE) (Zhang and et al. , 2017). SMOTE interpolates between the

existing minority data to synthesize minority samples (Chawla and et al. , 2002).

By 2018, more than 85 SMOTE variations were proposed (Cheah and et al. , 2023).

On the other hand, the algorithm-level solution primarily focuses on exploring

some suitable and robust classification algorithms, including ensemble learning

approaches (Yu and Ni , 2014) and reweight-learning methods (Kotsiantis , 2011).

Nevertheless, duplication and uncertainty introduced by re-sampling techniques,

as well as the high computational resources and time consumed by algorithm-level

methods, are some issues arising from such approaches.

However, some other works have adopted a cost-sensitive approach incorpo-

rating class-dependent misclassification costs of fraud (Sahin and et al. , 2013).

The cost-sensitive learning framework is a methodology between data-level and

algorithm-level approaches. In these techniques, both data-level transformations

(adding costs to samples) and algorithm-level modifications (by amending the

learning process to accept costs) are considered simultaneously. The resulting

classifier in these techniques is biased towards the minority class by assuming

higher costs of misclassification for the whole minority class. Following the min-

imization of the expected total cost for both classes, it provides a framework of

cost-sensitive approaches to address the imbalanced class problem. During the

past years, many cost-sensitive learning methods have been developed. Among

these studies, Domingos (1999) proposed the MetaCost algorithm, which is a

principled method for making an arbitrary classifier cost-sensitive by wrapping a

cost-minimizing procedure around it. Fan and et al. (1999) studied the problem

of reducing misclassification cost using boosting methods and proposed the Ada-

Cost algorithm. In AdaCost, the weight updating rule increases the weights of

costly wrong classifications more aggressively, but decreases the weights of costly

correct classifications more conservatively. Under this updating rule, the weights

for expensive samples are higher and the weights for inexpensive samples are com-

paratively lower. Elkan (2001) and Zadrozny and Elkan (2001) reviewed the

general structure of cost-sensitive learning and described the role of misclassifica-

tion costs on different cost-sensitive learning algorithms in detail. Sheng and Ling

(2006) presented the Thresholding method to make any cost-insensitive classifier

cost-sensitive. Thresholding selects a proper threshold from training data accord-

ing to the misclassification cost. Zhao (2008) compared the effects of weighting

and the threshold adjusting approach on several classification methods.

Morais and et al. (2016) used meta-learning technology to improve the existing

methods of resolving the imbalanced data problem. Such approaches modify the

data or model’s output based on the cost information rather than adapting the
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algorithm. This provides an innovative path for studying the problems of class-

imbalanced data. Sampling or instance-weighting (Zadrozny and et al. , 2003)

is a kind of cost-sensitive meta-learning technique. In a class-skewed distribution

scenario, the inequality between the number of instances in each of the classes

is severe, and therefore the class distribution is highly skewed. Chawla and et

al. (2002) used sampling algorithms to balance the class distribution of the

training data and make the minority-class instances well-represented, and as a

consequence, classifiers are allowed to place more importance on the minority

class. Jiang and et al. (2014) incorporated an instance weighting method into

various Bayesian network classifiers. They modified the probability estimation

of Bayesian network classifiers by the instance weighting method, which makes

Bayesian network classifiers cost-sensitive. Most cost-sensitive algorithms utilize

class-dependent costs ((Höppner and et al. , 2020); (Krawczyk and et al. , 2014);

(Domingos , 1999); (Chawla and et al. , 2008)).

In this paper, from a class-dependent cost-sensitive point of view, we propose

the CABNC, a meta-learning technique for detecting fraud in imbalanced credit

card data, that emphasizes cost matrix exploration through focusing on output

modification rather than instance weighting. BNC models include Naive Bayes

(NB) with the assumption of no intra-feature independence given the class, and

two additional models without this assumption: TAN and GHC-K2. Firstly, we

calculate the optimal cost matrix specific to each BNC based on economic efficiency

and other statistically based evaluation criteria. In the second step, to convert

BNCs to their corresponding CABNCs, a cost-sensitive class label assignment rule

is developed. Depending on the BNC and evaluation metric of interest, one optimal

cost matrix is calculated. Subsequently, by utilizing the matrix obtained in the

previous step, CABNC is generated. The performance of the models is assessed

in terms of Kappa, F1, Recall, Specificity, Accuracy, and Economic Efficiency.

All the computations are carried out with the pyAgrum package in the Python

programming language.

The paper is organized as follows: Section 2 introduces the Cost Augmented

learning approach and associated decision rule. Section 3 discusses the application

of proposed models to real data, and Section 4 concludes the paper.

2. Methodology

Imbalanced datasets are prevalent in numerous real-world scenarios where the dis-

tribution of classes in the data is significantly uneven. For the sake of simplicity, we

will consider the minority or rare class as the positive class and the majority class as

the negative class. Consider the dataset S = {(T1, Y1) , (T2, Y2) , . . . , (TN , YN )},
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where Tm = (T1, . . . , Tl) ∈ T ⊂ Rl,m = 1, . . . , N represents the l-dimensional

feature vector of N samples and the class variable is denoted by Ym ∈ {0,+1}.
The minority and majority classes are referred to as S+ and S−, defined as follows:

S+ = {(T, Y ) ∈ S : Y = +1} , NP = |S+|

S− = {(T, Y ) ∈ S : Y = 0} , NN = |S−|

where the sample sizes of the positive and negative classes are indicated as NN

and NP , respectively.

In binary classification, the imbalance ratio (IR) signifies the ratio of samples

associated with the positive class (fraudulent transactions) to those in the negative

class (legitimate transactions). This is a commonly used criterion for measuring

the degree of imbalance in a dataset. Typically, the size of the minority class is

minimal (NN � NP ), sometimes as low as 1% of the entire dataset. If we utilize

most traditional classifiers that do not account for costs, they are likely to predict

all instances as belonging to the negative class (the majority). This issue is often

seen as a challenge when working with a highly skewed class distribution with a

large amount of IR.

However, as noted by Provost (2000), two key assumptions are frequently

made in conventional cost-insensitive classifiers. The first assumption is that the

objective of the classifiers is to enhance accuracy (or reduce the error rate); the

second assumption is that the class distributions in both the training and test

datasets are identical. Given these two assumptions, in the case of a significantly

imbalanced dataset, predicting every instance as negative is often the appropriate

approach.

Consequently, the problem of class imbalance is pertinent only when one or

both of the two previously mentioned assumptions are violated; particularly, if

the costs associated with various error types (false positives and false negatives

in binary classification) are unequal, or if the class distribution in the test data

differs from that in the training data. The first scenario can be addressed effectively

through techniques found in cost-sensitive meta-learning.

When the cost of misclassification is unequal, it is usually more expensive to

misclassify a minority (fraudulent) transaction into a majority (legitimate) class

than a majority transaction into the minority class (otherwise, it is more plausible

to predict everything as legitimate). We do not mention the cases where class

distributions of training and test datasets are different.

Definition 2.1 (Cost Matrix). In the context of cost-sensitive methodologies for

addressing a classification issue, a cost matrix (C) is established for each confu-

sion matrix. The elements along the diagonal of this matrix indicate the costs

associated with correctly classifying transactions
[
C(Cn, Cn),C(Cp, Cp)

]
, while the
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off-diagonal elements reflect the costs incurred from misclassifying transactions[
C(Cn, Cp),C(Cp, Cn)

]
.

In this paper, we consider the case where the diagonal elements remain con-

stant. Thus, throughout the following sections, when we refer to the cost matrix,

we are specifically discussing the elements that lie outside of the main diagonal,

and our objective is to determine their optimal values. Consequently, we represent

the matrix as
(
Cnp,Cpn

)
.

There are two primary methods for estimating this matrix: direct and meta-

learning. The key concept behind developing a direct cost-sensitive learning al-

gorithm is to directly incorporate and utilize misclassification costs within the

learning algorithms. Meanwhile, cost-sensitive meta-learning transforms existing

cost-insensitive classifiers into cost-sensitive versions without changing their struc-

ture. Therefore, it can be considered a middleware component that either prepro-

cesses the training data or post-processes the outputs produced by cost-insensitive

learning algorithms.

2.1 Cost Matrix Calculation and Evaluation Measurements

This section outlines the different evaluation metrics for assessing models and lever-

aging them to achieve the optimal cost matrix required for cost-sensitive learning.

The criteria used to evaluate the performance of the learned Bayesian network

classifier are divided into metrics associated with economic and statistical factors.

2.1.1 Statistically Related Metrics

Based on the elements of the confusion matrix, metrics for classifier performance

evaluation are defined and estimated. The accuracy of predicting positive (fraud-

ulent) and negative (legitimate) transactions is denoted by Ap and An, respec-

tively. Furthermore, At evaluates the prediction’s accuracy, whether transactions

are fraudulent or legitimate.

An(Specificity) =
NTN

NTN +NFP
=
NTN

NN
,

Ap(Recall or Sensitivity) =
NTP

NTP +NFN
=
NTP

NP
,

At(Acc) =
NTP +NTN

NTN +NFP +NTP +NFN
=
NTP +NTN

NN +NP
.

The balance between Ap and An is achieved by optimal configuration of cost

matrix elements.
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Usually, in classification problems with two imbalanced categories, the F1 cri-

terion is used along with other criteria to evaluate a cost-sensitive model. This

criterion is defined as the harmonic mean of recall, Ap, and the accuracy; and is

calculated by (2.1)

F1 = 2×
(
Ap × Precision

Precision +Ap

)
; (2.1)

Precision =
NTP

NTP +NFP
=
NTP

NṔ

.

Since the harmonic mean of two numbers is close to the smaller one, a large value

of the F1 indicates that both recall and accuracy are simultaneously large.

In the context of applying Bayesian network classifiers to finance, the cost

matrix is often viewed as a univariate function representing the cost of mistakenly

classifying fraudulent transactions as legitimate, denoted as Cnp (Wang and et al.

, 2023; Bei and et al. , 2021). This paper treats the issue as a bivariate problem,

incorporating the costs of misclassifying transactions from both classes (Cnp and

Cpn). To determine the optimal cost matrix value, a lattice search method is

employed.

After completing the calculations, the cost that produces the maximum value

of economic efficiency (EE(k)T, S) or any of the Ap(Recall), An(Specificity),

At(Acc), F1, and Kappa criteria is deemed the optimal cost. The CABNC tech-

nique is subsequently applied to classify the transactions based on the optimal

cost matrix obtained.

2.1.2 Threshold Analysis

In cases where the cost matrix is unknown, the modification of the classification

output to detect the class label of the new transaction is proposed as an alternative

solution in addition to heuristically calculating the cost matrix.

To estimate the class label using statistical and economic evaluation criteria

specific to the problem under study from the validation dataset, this method ig-

nores the threshold standard value of 0.5. Definition (2.2) introduces a criterion,

economic efficiency, to determine the optimal threshold for class label assignment.

In this manner, a transaction is classified as fraudulent and belonging to the

positive class if the posterior probability of the positive class for that transaction

is higher than the threshold value.

The financial costs that result from the failure to detect a fraudulent transac-

tion are of great importance when confronting actual industry issues, irrespective

of the results obtained by ranking algorithms. Therefore, in the industry, the mod-

els are evaluated not only based on statistical criteria but also according to what
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is known as economic efficiency (EE). In the realm of financial literature, transac-

tions accurately classified as fraudulent (NTP ) avert capital losses for the financial

institution, whereas transactions accurately classified as legitimate (NTN ) yield a

profit of k percent of the transaction amount for the institution. Similarly, the

financial loss resulting from an incorrectly identified fraudulent transaction (NFN )

will be equal to 100 × (1 − k) percent of the transaction amount because the fi-

nancial institution makes k percent from such a transaction, while it is required

to reimburse the cardholder 100 percent of the unauthorized transaction cost.

Definition 2.2 (economic efficiency). In financial and credit institutions, the

monetary return from accurately classified legal transactions after subtracting cu-

mulative losses arising from the misclassification of fraudulent transactions is de-

fined as economic efficiency by (2.2).

EE(k)T, S =

NŃ∑
i=1

Return(ti);

Return(ti) =
(
k × vi

)
δi −

(
(1− k)× vi

)
(1− δi),

δi =

{
1 tiis accurately identified as legal

0 tiis misclassified as legal
(2.2)

The monetary value of the ith transaction (ti) is denoted by vi, whereas k

represents the fraction of the transaction’s monetary value that the financial insti-

tution retains as interest. De Sá and et al. (2018) defines the value of k to be 0.03

and calculates EE(0.03). The term NŃ denotes the number of legally identified

transactions, which is NTN +NFN . The function δi indicates whether ti has been

accurately identified as legal or incorrectly misclassified.

2.2 Bayesian Network Classifier (BNC)

The classification problem can be described as a procedure that, given a training

set D =
{

(tj , y)
}Ntrain

j=1
and an unclassified observation t = (t1, . . . , tl), assigns a

class label y.

A Bayesian network classifier addresses this task by first modeling the joint

distribution P (y, t) with a certain Bayesian network B, and then calculating the

posterior distribution P (y|t) by Bayes’ rule. A Bayesian network is characterized

by a pair B =< G,Θ >. The first component, G, is a directed acyclic graph. The

nodes in G represent random variables, including features T1, . . . , Tl and the class

variable Y . The second component of the pair, namely Θ, represents the set of

parameters that quantifies the network. It contains a parameter PB
(
tk|y, pa(tk)

)
,

the conditional probabilities induced by G. The arcs in G represent directed de-

pendencies between the nodes. If Tk points directly to Tl via a directed edge
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(an arc), we say Tk is the parent of Tl, which belongs to the parent set pa(Tk).

Different Bayesian network classifiers extended from Naive Bayes assume various

dependencies among the attributes, but all suppose that Y is the parent of all

attributes and has no parents.

A Naive Bayesian network (NB) defines a unique joint probability distribution

given by

PNB(t1, . . . , tl, y) = PNB(y)

l∏
k=1

PNB
(
tk|pa(tk)

)
.

where pa(tk) presents the parent set of tk. Unlike the NB’s strong assumption

about feature independence given the class, in the Tree Augmented Naive Bayesian

(TAN) network, each feature has as parents at most one other attribute in addi-

tion to the class variable. The TAN model defines a unique joint probability

distribution given by

PT AN (t, y) = PT AN (y)

l∏
k=1

PT AN
(
tk|y, pa(tk)

)
.

However, in more general structures, with no assumption about independence or

the class variable as the root, the joint probability distribution is given by

PB(t, y) = PB(y)PB(troot|y)

l∏
k=1

PB
(
tk|y, pa(tk)

)
.

By Bayes’ rule, the posterior distribution of an unclassified instance t can be

calculated as follows:

PB(y|t) =
PB(t, y)∑
y PB(t, y)

. (2.3)

where PB(t, y) denotes the joint probability distribution defined earlier. So we can

easily classify instance t into class arg maxy

(
PB(y|t)

)
.

2.3 Cost Augmented Bayesian Network Classifier (CABNC)

In this section, for the sake of robustness and interpretability, the Bayesian net-

work classifier B is transformed into cost-augmented versions by incorporating

misclassification costs into the loss function for class membership via modifying

the outputs in the label-assigning mechanism. As a result, determining the optimal

cost matrix is crucial to our approach. In a class-dependent cost-sensitive learn-

ing algorithm, the classifier is developed by minimizing an expected cost rather

than concentrating on an error rate function. This paper uses the term ”cost”

interchangeably with ”loss.”

In the context of fraud detection, when implementing cost-sensitive binary

classification based on the given BNC B, through a meta-learning perspective, the
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confusion matrix is derived by heuristically modifying the elements of the cost

matrix using equations (2.4) and (2.5).

L
(
Ci, t

)
=

∑
j∈{p,n}

Cij × PB
(
Cj |t1, . . . , tl

)
, i ∈ {p, n} (2.4)

Class = argmini∈{p,n}L
(
Ci, t

)
. (2.5)

where expression PB
(
Cj |t1, . . . , tl

)
; j ∈ {p, n} represents the posterior probability

for each class calculated by (2.3). Cij is the cost of assigning label Ci instead of

Cj .
The calculation of the cost matrix and its application for modifying the classi-

fier outputs involves a recursive process. Algorithm 1 outlines the overall frame-

work for generating CABNCs from cost-insensitive BNCs. As stated previously,

in the context of cost-augmented meta-learning, the original BNCs remain un-

changed, with both the structure and associated parameters staying intact. The

only aspect that varies is the classifier’s outputs, which are modified according to

(2.5).

3. Applications on Real Data

In this section, we implement the cost-sensitive approach proposed in this paper on

a real dataset obtained from the banking system in Iran. The data were collected

between May 4 and August 18, 2020, and contain information regarding commer-

cial credit card transactions processed through a specific type of money transfer

machine. To ensure confidentiality, the identification numbers of cardholders and

other sensitive identifiers have been anonymized.

The issue at hand is a binary classification problem involving two imbalanced

classes: fraud and legitimate. The analysis phase of the study is outlined as follows:

preprocessing, BNC estimation (including structure and parameter learning), cal-

culation of the cost matrix, and the generation of CABNC. Detailed comparisons

of the developed models are also included.

3.1 Preprocessing

In the data preprocessing step, feature engineering, discretization, and dependency

analysis were utilized to extract informative features that indicate the hidden so-

cial behavior of transactions. In this part of the data manipulation, we integrate

multiple transactions between the same source and target cards into one, lead-

ing the underlying relationships as a one-sided network. The lack of reciprocal

transactions in the data establishes a hierarchical framework within the network,
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Algorithm 1 Cost Augmented BNC Generation Framework

Inputs:

• Any cost-insensitive Bayesian network classifier including Naive Bayes

(NB), Tree-Augmented Naive Bayes (TAN), and GHC-K2,

• Initialize the sets of cost matrix possible values as Cnp and Cpn.

1. Select the evaluation measure of interest, eval, from the set of relevant

metrics: eval ∈
{
EE(0.03)T,S , Ap, An, At, P recision, F1,Kappa

}
,

2. Calculate the optimal cost matrix associated with the selected eval metric

from step 1 and consider it as
(
Cnp,Cpn

)
:

(a) Initialize set leval = ∅,

(b) For cnp ∈ Cnp and cpn ∈ Cpn do:

i. Calculate L
(
Cp, t

)
and L

(
Cn, t

)
by (2.4),

ii. Do the class label assignment for ti, i = 1, ..., Ntrain by (2.5),

iii. Compute the evaluation measure eval(cnp,cpn) based on the

results of 2(b)ii and add it into leval ←− leval∪{eval(cnp,cpn)}.

(c) Calculate the maximum value for leval and denote

max eval(cnp,cpn) ←− argmaxeval(cnp,cpn)

(
leval

)
which corre-

sponds to the optimal cost matrix (Cnp,Cpn).

3. Considering the cost matrix (Cnp,Cpn) obtained from step 2, for any new

transaction tnew, calculate the loss functions L
(
Cp, tnew

)
and L

(
Cn, tnew

)
by (2.4).

4. Update label assignment decision rule (2.5) associated with the step 3

findings.

Output: CABNC(
Cnp,Cpn

) is achieved by a combination of 3 and 4 results.
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wherein source nodes, representing the cards that transmit funds, serve as hubs,

while target nodes, or the cards that receive money, are regarded as authorities.

In this configuration, one-sided money transfers uncover criminal patterns, with

deposits made into target cards in a nonreciprocal manner. To leverage the struc-

tural characteristics of the transaction network, centrality measures pertinent to

the cards are calculated and employed as variables for the development of Bayesian

network models.

The interaction graph of fraudulent and legitimate transactions is illustrated

in Figure 1, highlighting their distinct characteristics. The differing behaviors of

these two classes are clearly observable.

1.0,0.13

0.36,0.05

0.17,0.02

0.04,0.005

0.35,0.04

0.15,0.02

0.15,0.02

0.87,0.36 0.98,0.49

1.0,0.61
0.71,0.35

0.58,0.23

(a) Legitimate transactions (b) Fraudulent transactions

Figure 1: Subnet comparison of legitimate and fraudulent transactions. The size

of the nodes corresponds to the eigenvector centrality value of the card, and the

edges match the color of the recipient’s card. (a) The intensity of the node color

reflects the node’s PageRank centrality criterion, indicating its importance. (b)

The color of the node signifies the extent of the node’s authority measure, which

denotes the card’s trustworthiness.

In the legitimate transactions subnet, larger nodes represent cards with ele-

vated eigenvector values, serving as key recipients for other influential cards in the

network. Among fraudulent transactions, the intensity of the red color indicates a

higher authority centrality value, which in turn implies greater credibility for the

corresponding node. Simply put, red cards represent those trusted by other cards

and primarily function as key recipients. These nodes in the fraudulent transac-

tions subnet reveal the existence of communities involved in illegal transactions.

On the other hand, in the legal transactions subnet, the intensity of the color

indicates both greater PageRank centrality and the increased importance of the
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nodes (Figure 1(a)). In this subnet, nodes that are both large (influential) and

prominent in color (important and key) represent crucial cards that significantly

influence the subnet behavior due to their effect on the interactions of other trans-

actions. Upon further investigation of the illegal transaction subnet in Figure 1(b),

it becomes evident that two recipient cards play a substantial role, one having an

authority close to 1 and the other at 0.98, along with eigenvector scores of 0.61 and

0.49. These cards serve both as reliable receivers of funds from illicit activities and

indicate clusters of interconnected accounts due to their associations with other

influential cards.

Additionally, the IR ratio of the transaction dataset is approximately three, in-

dicating about three legitimate transactions for each fraudulent one. This results

in 25.21 percent of all transactions being fraudulent. Consequently, the data are

considered highly imbalanced. Figure 2 displays the explanatory dependence anal-

ysis done with the help of the mutual information matrix. The weighted degree of

the target card, indicating the volume and frequency of the card’s involvement in

transactions as a recipient, probably plays an important role in determining the

label of the transactions.

Figure 2: Pairwise mutual information matrix of extracted features reflecting the internal

behavior of the network

3.2 Comparative analysis of BNCs

In this section, we divide the data into 30 percent for testing while using the

remaining portion for training the model. In addition, to evaluate how the model

performs on new transactions, the train-test split is conducted in such a way

that the imbalance ratio (IR) remains consistent with the entire dataset, which is

approximately 3 for both the training and testing subsets. The Bayesian network

classifiers under review include Naive Bayes (NB), Tree-Augmented Naive Bayes
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(TAN), and the results obtained from the Greedy Hill Climbing (GHC) search

utilizing the K2 score function (GHC-K2). Remember that the structure and

parameter learning of the Bayesian networks is not the primary focus of the paper,

so we left this part of the model estimation to the methods found in the literature.

The classifiers are assessed through Economic Efficiency (EE(0.03)T,S) and

various statistical metrics such as Ap (Recall), An (Specificity), Precision, F1,

Kappa, and AUC scores for both ROC and PR curves.

Table 1 reports the evaluation measures of the BNCs under investigation.

Based on the economic efficiency determined by the amount of money transferred

per transaction, GHC-K2, with a value of 112, 180, 908, 389, emerges as the top

performer. This model excels in terms of Recall (0.951), F1 (0.973), Kappa (0.964),

and At (0.987) as well. The findings of the AUC for both ROC and PR curves in

Figure 3(a) and Table 1 indicate that the GHC-K2 classifier, with PR-AUC and

ROC-AUC values of 0.9949 and 0.9980, respectively, outperforms the other two

models.

Table 1: Comparison between BNCs based on Statistical and Economical Measures

Measure NB TAN GHC-K2

Kappa 0.859 0.956 0.964

F1 0.892 0.967 0.973

An(Specificity) 0.999 1.000 0.999

At(ACC) 0.949 0.984 0.987

Ap(Recall) 0.807 0.937 0.951

Precision 0.996 1.000 0.997

EE(0.03)T 88, 323, 095, 401 111, 896, 953, 189 112, 180, 908, 389

EE(0.03)S −368, 142, 064 1, 357, 798, 436 1, 393, 761, 336

PR-AUC 0.9577 0.9939 0.9949

ROC-AUC 0.9807 0.9976 0.9980

Threshold 0.8096 0.3320 0.3054

Figure 3(b) illustrates that the GHC-K2 model demonstrated the highest eco-

nomic efficiency regarding the flow of incoming transactions to the recipient cards,

reaching a total of EE(0.03)T = 112,180,908,389. On the other hand, the NB

model achieved the lowest economic efficiency related to incoming transactions to

the target card, revealing a difference of 23,857,812,988 compared to the GHC-K2.
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When evaluating outgoing transactions from issuer cards (EE(0.03)S), employing

the NB model probably results in no profit for the financial institution, and it

might also incur a maximum financial loss of 368,142,064.

(a) (b)

Figure 3: Comparison between BNCs, (a) statistical evaluation measures, (b) economic effi-

ciency, EE(0.03)T,S.

Figure 4 displays the performance of the BNCs in terms of confusion and

Sankey matrices. According to this figure, evidently GHC-K2 performs well in

creating the balance between precision and recall.
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Figure 4: Confusion Sankey-matrix for BNCs

This study does not adhere to the standard threshold of 0.5 for assigning la-

bels according to the probabilities calculated for each class. Instead, it performs a

threshold analysis using the PR curve to determine the most suitable value tailored



Credit-Card Fraud Detection: Cost-Sensitive Meta-Learning BNC 205

to the dataset. Based on the results presented in Figure 5, the optimal threshold

values are 0.33 for TAN and 0.31 for GHC-K2. For the Naive Bayes classifier,

the ideal threshold is notably above 0.5, calculated as 0.8, indicating that transac-

tions are marked as fraudulent when the estimated probability exceeds 80 percent.

This significantly high threshold indicates that Naive Bayes functions as a very

conservative classifier.

(a) NB (b) TAN (c) GHC-K2

{0.8096} {0.3320} {0.3054}

Figure 5: ROC-PR Curves for BNCs: {Threshold for Label Assignment}

3.3 Optimal Cost Matrix Calculation

As outlined in the methodology, in this part of the analysis we convert the ordinary

cost-insensitive BNCs into their corresponding cost-augmented versions estimated

earlier. To achieve this, by implementing Algorithm 1, introduced in Section 2.3,

we compute a cost matrix optimized for any evaluation criteria specified in Table

1. From a misclassification cost standpoint, we disregard the diagonal elements of

the cost matrix related to accurate classifications, Cnn and Cpp, assigning both a

near-zero value of 10−8. Furthermore, for the remaining off-diagonal elements of
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the cost matrix, we apply the values presented in equation (3.6).

Cpn ∈
{

104, 103, 100, 10, 1, 0.1, 0.01, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8
}

Cnp ∈
{

104, 103, 100, 10, 1, 0.1, 0.01, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8
}

(3.6)

Subsequently, a grid search is performed using these two sets to identify the optimal

CABNCs according to equation (2.4), with labels assigned by equation (2.5). The

most effective CABNCs are determined by evaluating all the metrics listed in

Table 1. The combination of matrix elements corresponding to the best-estimated

CABNCs yields the optimal cost matrix. These elements, along with their related

CABNCs, are represented as
(
Cnp,Cpn

)
and CABNC(

Cnp,Cpn

), respectively.

3.4 Cost Augmented BNC Generation

The main goal of the paper is class label prediction in a cost-sensitive meta-

learning approach called CABNC models. This section analyzes such cost-sensitive

classifiers.

The findings of the three top-performing cost-sensitive CABNCs, evaluated

by various metrics, are presented in Table 2 and illustrated in Figure 6. Table

2 identifies the CATAN(
104,103

) obtained through cost matrix optimization fol-

lowing the EE(0.03)T,S measure as the best performer. This model achieves the

highest economic efficiency value (EE(0.03)T=113,002,862,129). In addition, the

cost matrix that is optimal for Ap (Recall) is determined as
(
104, 102

)
, regardless

of the BNCs being analyzed. Furthermore, the corresponding CATAN(
104,102

),
which has values of F1=0.832, At=0.895, Ap=1.000, Precision=0.713, An=0.859,

Kappa=0.759, and EE(0.03)T=112,781,093,731, ranks first among the other two

cost-augmented BNCs in this category.

Additionally, an exploration of Table 2 indicates that when considering cost

matrix calculations using different statistically derived metrics beyond Recall,

CAGHC-K2(
104,104

) stands out as the most effective cost-sensitive classifier com-

pared to its two counterparts. This model exhibits strong performance in ac-

curately distinguishing between fraudulent and legitimate transactions, achieving

metrics of Ap=0.939 and An=1.000. With an EE(0.03)T value of 111,965,861,989,

it demonstrates a satisfactory level of economic efficiency as well.

3.5 CABNCs versus BNCs

To improve the performance of BNCs in scenarios with class imbalance, the au-

thors propose CABNCs. This section reports the comparative analysis of BNCs

alongside their corresponding CABNCs.
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Figure 6: Confusion Sankey-matrix for best CABNs: {Metric for Cost Matrix Optimization}

According to Table 3, typically, the effectiveness of cost-sensitive TANs does

not improve when assessed using statistical measures. However, comparison of

TAN and CATAN(
104,104

) reveals that the closest resemblance is achieved when

the cost matrix is optimized based on statistical metrics including Kappa, F1,

An, and Specificity. Nonetheless, applying CATANs, especially when the cost ma-

trix is calculated by financial efficiency (EE(0.03)T,S) and Ap, boosts the model’s

capability to accurately detect fraudulent transactions while also enhancing finan-

cial efficiency (comparison of cost-sensitive CATAN(
104,103

) and CATAN(
104,102

)
models with the ordinary TAN model). Moreover, analyzing the standard NB and

GHC-K2 models alongside their cost-sensitive counterparts depicts that comput-

ing the cost matrix using statistical metrics apart from Ap tends to diminish model

effectiveness, while merely providing a slight improvement in the model’s capacity

to accurately identify legitimate transactions, quantified by An and Precision.

Table 3 demonstrates that when a model is designed to generalize findings
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and make decisions about new instances, evaluating the model through statisti-

cal measures indicates that optimizing the cost matrix based on these criteria is

not advisable. Compared to traditional models, the economic efficiency of cost-

sensitive versions is not only diminished, but the CANB and CAGHC-K2 also re-

veal a slight improvement in performance regarding An and Precision (comparison

of CAGHC-K2(
104,104

) and CANB(
103,104

) with GHC-K2 and NB, accordingly).

However, CATANs show no differences from the standard TAN model, even when

evaluated using these metrics.

3.6 Discussion

According to the findings, the GHC-K2 classifier stands out as the top per-

former among the BNCs analyzed in this research, showcasing an EE(0.03)T of

(112, 180, 908, 389), with a Recall of (0.951), F1 score of (0.973), Kappa value of

(0.964), and At of (0.987), making it the best option from both a financial and

statistical viewpoint.

Furthermore, through the analysis of the AUC of the PR-curve, we determined

the threshold values for assigning class labels for the GHC-K2, TAN, and Naive

Bayes classifiers at 0.31, 0.33, and 0.81, correspondingly.

Additionally, during the cost-sensitive analysis phase, irrespective of the BNCs

being investigated, the optimal cost matrix specific to Ap is established as
(
103, 102

)
.

The cost matrix values optimized according to F1, Specificity, and Accuracy for

the GHC-K2 and TAN models are determined to be
(
104, 104

)
, while for the NB

model, the values are
(
103, 104

)
. Moreover, concerning the economic efficiency

measure, the corresponding matrix for the NB and TAN models is calculated to

be
(
104, 103

)
, and for the GHC-K2 model, it is

(
10−6, 10−7

)
.

Based on the comparative analysis done in this paper, two economically effi-

cient and powerful models to detect fraudulent transactions are Cost Augmented

models created by TAN with cost matrix optimized in terms of Ap (Recall)

and EE(0.03)T,S, denoted by CATAN(
104,103

) and CATAN(
104,102

), respectively.

However, a statistically well-performing model obtained in this study is the CAGHC-

K2(
10−6,10−7

) model associated with the F1-specific optimal cost matrix.

Ultimately, refining the cost matrix according to statistical evaluation measures

affects the statistical efficacy and economic efficiency of CABNCs when compared

to conventional BNC models. On the other hand, by determining the ideal cost

matrix using the EE(0.03)T,S and Ap metrics, the economic efficiency of the cost-

sensitive model is enhanced, and the model’s ability to accurately identify fraud-

ulent transactions improves as well.
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4. Conclusion and Future Work

This paper investigates the issue of credit card fraud detection using a binary

classification approach consisting of two steps. Firstly, we address the problem

by employing three different types of Bayesian network classifiers, ranging from

Naive Bayes to more sophisticated models such as TAN and GHC-K2. Tradi-

tional Bayesian network classifiers are designed to minimize misclassification er-

rors. When applied to class imbalance learning tasks, their performance decreases

generally. Hence, to improve their effectiveness, we incorporate the cost-sensitive

meta-learning technique into various BNCs and develop the CABNCs in this re-

search. So, we contribute to the literature by enhancing the performance of the

traditional BNCs via CABNC generation and cost-sensitive modification of the

BNC’s output in a meta-learning line of research. The proposed approach allo-

cates varying costs to different class instances, motivating classifiers to concentrate

on class instances with greater misclassification costs.

Due to the financial impact of the misclassification of illicit transactions, we

evaluate the classifiers based on Economic Efficiency, EE(0.03)T,S, as defined in

this paper. To generate CABNCs, we perform cost matrix calculations specific

to various evaluation measurements. The developed cost-sensitive CABNCs are

compared regarding both economic efficiency and relevant statistical metrics, in-

cluding F1, Ap (recall), An (specificity), At (accuracy), and Kappa. Experimental

findings demonstrate that our recommended cost-sensitive CABNCs significantly

outperform the original cost-insensitive BNCs, particularly in terms of economic

efficiency and recall.

In industrial applications where Economic Efficiency and accurate prediction

of fraudulent transactions are critical simultaneously, it is advisable to employ

the cost-sensitive CATAN classifier. However, if the principal objective is to fore-

cast the class label of forthcoming transactions, it is recommended to utilize the

CAGHC-K2 associated with a cost matrix computed based on statistical metrics

other than Ap.

There are several possible directions for future research. To keep it straightfor-

ward, we limit our investigation to three fundamental Bayesian Network structures:

Näıve Bayes, TAN, and its improved version utilizing a hill-climbing method. Con-

sequently, a key area for future research will be to broaden our existing analysis

to incorporate the K2 algorithm for developing Bayesian Network structures. In-

vestigation of cost-sensitive Bayesian Networks through an instance-dependent

weighting approach would also be another attractive line of future research. Fur-

thermore, studying the temporal aspects of transactions through utilizing dynamic

Bayesian networks within a cost-sensitive context presents another promising re-

search avenue.
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Table 2: Comparison between CABNCs by optimization metrics

Optimization Measure Model Name

Metric Name CANB CATAN CAGHC-K2

EE(0.03)T,S

Cost Matrix
(
10000, 1000

) (
10000, 1000

) (
10e−6, 10e−7

)
Kappa 0.701 0.893 0.871

F1 0.794 0.923 0.907

An(Specificity) 0.820 0.942 0.933

At(ACC) 0.866 0.957 0.948

Ap(Recall) 0.997 0.997 0.988

Precision 0.660 0.859 0.839

EE(0.03)T 111, 435, 110, 441 113, 002, 862, 129 112, 784, 055, 239

EE(0.03)S 1, 419, 459, 848 1, 454, 840, 966 1, 431, 696, 966

Kappa,F1
Cost Matrix

(
1000, 10000

) (
10000, 10000

) (
10000, 10000

)
Kappa 0.843 0.954 0.958

At(Acc)

F1 0.879 0.966 0.969

An(Specificity) 1.000 1.000 1.000

Precision
At(ACC) 0.944 0.983 0.984

Ap(Recall) 0.784 0.934 0.939

An(Specificity)
Precision 1.000 1.000 1.000

EE(0.03)T 86, 409, 761, 839 111, 852, 546, 589 111, 965, 861, 989

EE(0.03)S −484, 522, 564 1, 294, 457, 436 1, 365, 267, 436

Ap(Recall)

Cost Matrix
(
10000, 100

) (
10000, 100

) (
10000, 100

)
Kappa 0.489 0.759 0.679

F1 0.666 0.832 0.781

An(Specificity) 0.648 0.859 0.803

At(ACC) 0.74 0.895 0.854

Ap(Recall) 1.000 1.000 1.000

Precision 0.499 0.713 0.64

EE(0.03)T 104, 069, 427, 877 112, 781, 093, 731 111, 972, 542, 792

EE(0.03)S 1, 148, 457, 905 1, 414, 735, 523 1, 400, 164, 733
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Table 3: Comparison of the classifiers: BNCs vs CABNCs

Model Name Kappa F1 Precision At Ap An EE(0.03)T EE(0.03)S

NB 0.859 0.892 0.996 0.949 0.807 0.999 88, 323, 095, 401 −368, 142, 064

CANB(
104,103

)
0.701 0.794 0.660 0.866 0.997 0.820 111, 435, 110, 441 1, 419, 459, 848

EE(0.03)T,S

CANB(
104,102

)
0.489 0.666 0.499 0.739 1 0.648 104, 069, 427, 877 1, 148, 457, 905

Ap(Recall)

CANB(
103,104

)
0.843 0.879 1 0.944 0.784 1 86, 409, 761, 839 −484, 522, 564

F1,Kappa,At,An,Precision

TAN 0.956 0.967 1 0.984 0.937 1 111, 896, 953, 189 1, 357, 798, 436

CATAN(
104,103

)
0.893 0.923 0.859 0.957 0.997 0.942 113, 002, 862, 129 1, 454, 840, 966

EE(0.03)T,S

CATAN(
104,102

)
0.759 0.832 0.713 0.895 1 0.859 112, 781, 093, 731 1, 414, 735, 523

Ap(Recall)

CATAN(
104,104

)
0.954 0.966 1 0.983 0.934 1 111, 852, 546, 589 1, 294, 457, 436

F1,Kappa,At,An,Precision

GHC-K2 0.964 0.973 0.997 0.987 0.951 0.999 112, 180, 908, 389 1, 393, 761, 336

CAGHC-K2(
10−6,10−7

)
0.871 0.907 0.839 0.948 0.988 0.933 112, 784, 055, 239 1, 431, 696, 966

EE(0.03)T,S

CAGHC-K2(
104,102

)
0.679 0.781 0.640 0.854 1 0.803 111, 972, 542, 792 1, 400, 164, 733

Ap(Recall)

CAGHC-K2(
104,104

)
0.958 0.969 1 0.984 0.939 1 111, 965, 861, 989 1, 365, 267, 436

F1,Kappa,At,An,Precision
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