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Abstract: This article examines the probability structure and dependency struc-

ture of a new family of Archimedean copula functions that are generated with

two generators; this family is known as a generalization of the Archimedean cop-

ula functions and provides more tail dependence properties than the Archimedean

family, making it more applicable. Using simulations, we compare a member of this

family with various existing copula functions to highlight similarities and differ-

ences, and if the desired copula’s scatter plot in terms of tail dependence is similar

to the generalized Archimedean copula, we can fit the generalized Archimedean

copula function to it.

Applications of this copula in the financial domain are demonstrated to improve

the study of the dependence between indicators and to utilize this copula’s advan-

tageous characteristics. These theoretical concepts are validated by the numerical

example provided at the end of the paper.
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1. Introduction

This study introduces a new family of generalized Archimedean copulas generated

by combining two distinct generators. By enhancing tail dependence properties,

this new family better captures the intricate dependencies present in multivariate

data. The two-generator copula functions exhibit superior tail dependence prop-

erties. This means they can more accurately model extreme joint occurrences in

datasets, which is crucial in fields like finance and risk management. This ap-

proach offers greater flexibility in modeling dependence structures. It can adapt

to a wider range of data distributions, particularly those with strong dependencies

that existing methods may not adequately capture.

The idea and broad definitions of copula, multivariate copula, and Archimedean

copula are covered in the first section of the article. View the most recent works by

Amblard and Girard (2002); Rodŕıguez-Lallena and Úbeda-Flores (2004); Nelsen

(2006); Li (2013); Durante and Sempi (2016); Joe et al. (2010). The features of

dependence and tail dependence are as follows; refer to Nelsen (2006); Luca and

Rivieccio (2012); Joe et al. (2010); Genest et al. (2024). The second section in-

troduces and studies a class of bivariate copulas, an extension of the well-known

Archimedean family. The function induced is a copula, and it is investigated in

the following under what circumstances the generators of this function Durante et

al. (2007); Genest and Rivest (1993); Esary and Proschan (1972). Additionally,

there exist other instances of extensions of this family of Archimedean copulas and

their connections to other prominent Archimedean copulas; these may be found in

Durante (2006); Genest and Rivest (1993); Wang and Wells (2000); Kasper (2024);

Chesneau and Alhadlaq (2024); Guan and Wang (2024); Górecki and Okhrin

(2024); Okhrin and Ristig (2024). The use of family associative generators to

create generalized Archimedean copulas and the process by which one creates a

generalized Archimedean copula by joining associative generators of Archimedean

copulas are given below.

1.1 Copula

First, the definition of copula Schweizer and Wolff (1981); Durante and Sempi

(2016) is given in formal terms. Let R stand for the ordinary real line (−∞,∞), R
2

for the extended real plane R×R, and R for the extended real line [−∞,+∞]. The

Cartesian product of two closed intervals is a rectangle R
2
: B = [x1, x2]× [y1, y2].

The joint (x1, y1), (x2, y1), (x1, y2), (x2,y2) ∈ B. The product of I × I, where

I = [0, 1], is the unit square I2.

Definition 1.1. A function C from I2 with the following characteristics is called

a copula:
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i For each s, t in I

C(s, 0) = 0 = C(0, t), and C(s, 1) = s, C(1, t) = t. (1.1)

ii For each set of values x1, x2, y1, y2 in I such that x1 ≤ x2 and y1 ≤ y2,

C(x2, y2)− C(x2, y1)− C(x1, y2) + C(x1, y1) ≥ 0. (1.2)

If C is a copula, then max(t+ s−1, 0)≤C(t, s)≤min(t, s) for any (t, s) ∈ DomC.
These are bounds, and they are usually expressed as w(t, s) = max(t+ s− 1, 0)

and M(t, s) = min(t, s).

We now revisit it in the bivariate context, as per the subsequent Theorem, with

regard to A. Sklar, who created copulas Schweizer and Wolff (1981).

Theorem 1.2 (Sklar’s Theorem). If H is a joint function of distribution having

margins F and G, then for each x, y in R, there exists a copula C, and if F and

G are continuous, then

H(x, y) = C(F (x), G(y)), (1.3)

is unique; if not, C is unique on RangF×RangG. Conversely, if C is a copula

and F,G are distribution functions, then the function H given by (1.3) is a joint

distribution function having margins F and G and

C(x, y) = H(F (−1)(x), G(−1)(y)). (1.4)

Definition 1.3 (see Marshall et al. (1979)). If c1(x, y) ≤ c2(x, y) for all x, y ∈ I,

then c1 ≺ c2 (or c2 � c1) is written when c1 and c2 are copulas. This suggests that

either c2 is larger than c1 or c1 is smaller than c2.

The copula product of two variables, x and y, is expressed as C(x, y) =

Π(x, y)= uv.

There are several methods for generating observations (x, y) of a pair of random

variables (x, y) with a joint function of distribution H. In this section, we will

focus on using the copula as a tool. By applying Sklar’s theorem, we may use

an approach similar to the one in the preceding paragraph to convert uniform

variates. This is all that is needed to generate a pair (x, y) of observations of

uniform (0,1) random variables (x, y) whose joint distribution function is C, the

copula of x and y. This process requires a conditionally distributed function for y

with x, y, which we designate as Cx(y):

Cx(y) = p[Y ≤ y|X = x] = lim
∆x→0

C(x+ ∆x, y)− C(x, y)

∆x
=

∂

∂x
C(x, y).

Observe that practically everywhere in I, the function y → ∂
∂xC(x, y), which

we now use to denote Cx(y), exists and is non-decreasing.
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1. Create two uniform (0, 1) variates, x and t, that are independent.

2. Establish y = C(−1)
x (t), where a quasi-inverse of Cx is indicated by C(−1)

x .

3. (x, y) is the desired pairing.

2. Bivariate Archimedean Copulas

Archimedean copulas have found widespread applications due to several appealing

properties:

1. The ease with which they can be constructed;

2. The wide variety of copula families they encompass; and

3. The numerous elegant mathematical properties they exhibit.

Let ϕ be a strictly decreasing function from I to [0,∞] such that ϕ(1) = 0 and

ϕ(C(x, y)) = ϕ(x) + ϕ(y). (2.5)

Definition 2.1. Let ϕ be a continuous, strictly decreasing function from I to

[0,∞] such that ϕ(1) = 0. The pseudo-inverse of ϕ, denoted ϕ[−1], is defined as

ϕ[−1](t) =

ϕ−1(t), 0 ≤ t ≤ ϕ(0),

0, ϕ(0) ≤ t ≤ ∞.
(2.6)

The domain of ϕ[−1] is [0,∞], and its range is I.

Note that ϕ[−1] is continuous and non-increasing on [0,∞], and strictly de-

creasing on [0, ϕ(0)]. Furthermore, we have ϕ[−1](ϕ(x)) = x for all x ∈ I, and

ϕ(ϕ[−1](t)) =

t, 0 ≤ t ≤ ϕ(0),

0, ϕ(0) ≤ t ≤ ∞,
= min(t, ϕ(0)). (2.7)

In the special case where ϕ(0) =∞, we have ϕ−1 = ϕ[−1].

Lemma 2.2. Assume ϕ is a strictly decreasing, continuous function from I to

[0,∞], and let ϕ[−1] be its pseudo-inverse as defined in (2.6). Define the function

C : I2 → I by

C(x, y) = ϕ[−1](ϕ(x) + ϕ(y)). (2.8)

Then C satisfies the boundary conditions (1.1) and (1.2), and hence is a copula.

Theorem 2.3. Let ϕ be a continuous, strictly decreasing function from I to [0,∞]

with ϕ(1) = 0, and let ϕ[−1] be the pseudo-inverse defined in (2.6). The function

C : I2 → I given by (2.8) is a copula if and only if ϕ is convex.
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The function ϕ is called the generator of the copula, and copulas of the form

(2.8) are referred to as Archimedean copulas. If ϕ(0) = ∞, we say that ϕ is a

strict generator, and in this case, both ϕ[−1] and C(x, y) = ϕ−1(ϕ(x)+ϕ(y)) define

a strict Archimedean copula.

Theorem 2.4. Let C be an Archimedean copula with generator ϕ. Then:

1. The following properties hold:

(a) Symmetry: C(x, y) = C(y, x) for all x, y ∈ I;

(b) Associativity: C(C(x, y), w) = C(x, C(y, w)) for all x, y, w ∈ I;

(c) For any c > 0, cϕ is also a generator of C.

2. Suppose C is an associative copula such that for every x ∈ (0, 1), the function

δc(x) < x. Then C is an Archimedean copula.

3. Let C be an Archimedean copula generated by ϕ ∈ Φ. Then there exists a

positive integer n such that xc < y for any x, y ∈ I.

4. Every Archimedean copula has convex level curves.

3. Tail Dependence

Definition 3.1. Let (X,Y ) be a vector with the marginal distribution functions

F and G representing continuous random variables. The following

λU =limu→1P{Y > G−1(u)|X > F−1(u)}. (3.9)

is the coefficient of upper tail dependence of (X,Y ). Assume the existence of the

limit λU ∈ [0, 1]. Furthermore, given that limλL ∈ [0, 1] exists, the coefficient of

lower tail dependence of (X,Y ) is

λL =limu→0F{Y ≤ G−1(t)|X ≤ F−1(t)}. (3.10)

Theorem 3.2. Given λL, λU , F,G,X, Y , let C be the copula of X,Y with diagonal

section δC, then

λU = 2−limt→1
1− C(t, t)

1− t
= 2− δ′C(1−), (3.11)

exists if the limits (3.9) and (3.10) exist.

Proof. We have

λU = limt→1−P [Y > G−1(t)|X< F−1(t)]

= limt→1−
C(t, t)
1− t

= limt→1−
1− 2t+ C(t, t)

1− t

= 2−limt→1−
1− C(t, t)

1− t
= 2− δ′C(1−).
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For λL, the proof is the same.

If λU ∈ (0, 1), then the copula C has upper tail dependence; otherwise, it has

upper tail independence.

Corollary 3.3. If C is an Archimedean copula with generator ϕ ∈ Ω, then

λU = 2−limt→1−
1− ϕ[−1](2ϕ(t))

1− t
= 2−limt→1+

1− ϕ[−1](2x)

1− ϕ[−1](x)
,

and

λU =limt→0+

ϕ[−1](2ϕ(t))

t
= limx→∞

ϕ[−1](2x)

ϕ[−1](x)
. (3.12)

4. The generalized bivariate Archimedean copu-

las

Let Φ represent the class of all continuous and strictly decreasing functions ϕ :

[0, 1]→ [0,∞], and let ψ represent the class of all continuous, decreasing functions

ψ : [0, 1]→ [0,∞] with ψ(1) = 0. We also define Φ0 = Φ ∩Ψ .

The function Cϕ,ψ : [0, 1]2 → [0, 1] is defined by

Cϕ,ψ(x, y) = ϕ[−1](ϕ(x∧y) + ψ(x ∨ y)), (4.13)

where x∧y = min{x, y} and x ∨ y = max{x, y}. Keep in mind that all of these

functions are symmetric, meaning that for any x, y ∈ [0, 1], Cϕ,ψ(x, y) = Cϕ,ψ(y, x).

For every x ∈ [0, 1],

0 ≤ Cϕ,ψ(x, 0) = ϕ[−1](ϕ(0) + ψ(x)) ≤ ϕ[−1](ϕ(0)) = 0,

can be quickly shown using the equality ϕ[−1](ϕ(t)) = t. Also, Cϕ,ψ satisfies (1.1)

and (1.2), which are the boundary conditions.

Theorem 4.1 (Durante (2006)). Let us assume that ϕ and ψ are members of

Φ and Ψ, respectively. We define the function C = Cϕ,ψ by (4.13). Then, C is

a copula if ϕ is convex and (ψ − ϕ) is increasing on [0, 1]. Since the function

t 7→ (ψ(t)− ϕ(t)) is increasing, it follows that for all t ∈ [0, 1], ϕ(t) ≥ ψ(t).

Indeed, if x0 ∈ (0, 1) and ϕ(x0) < ψ(x0), then

0 < ψ(x0)− ϕ(x0) ≤ ψ(1)− ϕ(1) ≤ 0,

which is a contradiction.
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Theorem 4.2. Let h, k be two continuous, increasing functions from [0, 1] to [0, 1],

with k(1) = 1. If h is log-concave and t 7→ h(t)
k(t) is increasing, then

Ch,k(x, y) = h[−1](h(x ∧ y)k(x ∨ y))

is a copula.

We now introduce a class of bivariate copulas that includes several well-known

copulas. Let f be a function from [0, 1] to [0, 1]. For all u, v ∈ [0, 1], the function

Cf is defined as:

Cf = (t ∧ s)f(t ∨ s), (4.14)

where t ∧ s = min(t, s) and t ∨ s = max(t, s). It is evident that the function Cf is

symmetric in the sense that for each t, s ∈ [0, 1], Cf (r, s) = Cf (s, t), as shown in

Durante (2006).

Theorem 4.3. Consider a continuous function f : [0, 1] → [0, 1] that is differ-

entiable everywhere except at a finite number of points. The function defined by

equation (4.14) is denoted as Cf . In this case, Cf is a copula if and only if the

following conditions hold:

1. f(1) = 1

2. f is increasing

3. t 7→ f(t)
t is decreasing on the interval [0, 1].

Example 4.4. Assume that f(t) = t− ln t and that ϕ(t) = − ln t, ψ(t) = − ln t(t−
ln t). According to Theorem 4.3, the function f is appropriate because:

1. f(1) = 1− ln(1) = 1

2. f ′(t) = 1− 1
t is increasing

3. f(t)
t = 1− ln(t)

t is decreasing on [0, 1]

Thus, for all t, s ∈ [0, 1], we have:

Cϕ,ψ(t, s) = ϕ−1(ϕ(t ∧ s) + ψ(t ∨ s))

= exp {− (− ln(t ∧ s) + (− ln((t ∧ s)− ln(t ∨ s))))}

= exp {ln(t ∧ s) + ln ((t ∧ s)− ln(t ∨ s))}

= (t ∧ s)f(t ∨ s).

The copula function is of the type (2.8).
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Example 4.5. Let ψ(x) = − lnxα, α ∈ [0, 1] and ϕ(x) = − lnx. Then for all

t, s ∈ [0, 1], we have:

Cϕ,ψ(t, s) = ϕ−1 (− ln(t ∧ s) + (− ln(t ∨ s)α))

= exp {− (− ln(t ∧ s) + (− ln(t ∧ s)α))}

= (t ∧ s)(t ∨ s)α,

and

Ca(t, s) =

(t ∧ s)(t ∨ s)α, if t ≤ s,

tαs, if t > s.
(4.15)

Ca belongs to the copula family Cuadras-Auge. Theorem 4.3 states that C(t, s) =

(t ∧ s)f(t ∨ s) represents a copula, where f is a suitable function from [0, 1]

to [0,+∞]. Therefore, C is of the type (4.15). To determine this, we take

ψ(t) = − ln f(t) and ϕ(t) = − ln t. For all t, s ∈ [0, 1], we have:

Cϕ,ψ(t, s) = ϕ−1(ϕ(t ∧ s) + ψ(t ∨ s))

= ϕ−1 (− ln(t ∧ s) + (− ln f(t ∨ s)))

= exp {− (− ln(t ∧ s) + (− ln f(t ∨ s)))}

= (t ∧ s)f(t ∨ s).

The two-generator copula functions, which generalize the Archimedean copula

family, exhibit superior tail dependence properties. This means they can more

accurately model extreme joint occurrences in datasets, which is crucial in fields

like finance and risk management.

5. Comparison of a member of the family of gen-

eralized Archimedean copula with different

Archimedean Copulas

Building on the previously discussed results, we have discovered that the copula

Cϕ,ψ (from the generalized Archimedean copula class) can be constructed if ϕ and

ψ are valid generators. The dependency structure properties of this class were only

recently introduced, and as such, the copula function data containing members of

this class may not always be easily identified in practice. This makes it difficult

to infer their joint distribution solely from the dependence properties. Therefore,

this section conducts an empirical investigation to address this issue. We generate

data from the generalized Archimedean copula and perform hypothesis testing with

several Archimedean copulas in an attempt to determine the degree of resemblance

between these two distributions.
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Figure 1: The scatter plot of data generated from the Archimedean copula

The generalized Archimedean copula is used to create data, while other Archimedean

copulas are used to test hypotheses. The null hypothesis of the Archimedean cop-

ula has not been rejected, and we made an error in practice if the null hypothesis

is true for any of the copulas other than the generalized Archimedean copula,

which is not derived from the generalized Archimedean copula. With generator

ϕ(t) = 1
t − 1, ψ(t) = − ln t, let us consider a desired generalized Archimedean

copula. The copula function is as follows:

t =
∂C(t, s)
∂t

=

{
1

(1−t ln s)2
, t ≤ s,

1
t(1−s ln t)2

, t > s.

Then

C(−1)
t (t) =

{
exp

√
t−1

(t
√
t)
, t ≤ s,

√
ut

1−
√
ut ln t

, t > s.

Figure 1 displays the scatter plot of the data produced by the Archimedean copula.

Figure 1 illustrates that while λU is almost equivalent to zero, λL is opposite

to zero for these data and there is minimal reliance. This problem may also be

demonstrated using the scatter plot and the following methods:

λU = 2−limt→1−
1− C(t, t)

1− t

= 2−limt→1−
1− ϕ−1(ϕ(t, t) + ψ(t, t))

1− t

= 2−limt→1−
1− ln t− t

(1− t)(1− t ln t)

= 2−limt→1−
− ln t− 1− 1

−(1− t ln t) + (− ln t− 1)(1− t)
= 2− 2 = 0,
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and

λL = limt→0+

C(t, t)
t

= limt→0+

t

t(1− t ln t)

= limt→1−
1

(1− t ln t) + t(− ln t− 1)
= 1 6= 0.

We now take into consideration those Archimedean families that, like this

Archimedean copula, are generalized in terms of upper and lower tail dependency.

To what degree the chosen Archimedean Copulas and the generalized Archimedean

copulas differ is our goal. The following are the chosen copulas (refer to (Nelsen,

2006, 4.2.12, 4.2.16, 4.2.19 and 4.2.20)):

i

Cϕ(x, y) =
(

1 +
[
(x−1 − 1)θ + (y−1 − 1)

] 1
θ

)−1

,

where

ϕ(t) =

(
1

t
− 1

)θ
, θ ∈ [1,∞], λL = 2−

1
θ , λU = 2− 2

1
θ .

ii

Cϕ(x, y) =
1

2

(
S +

√
S2 + 4θ

)
, S = x+ y − 1− θ

(
1

x
+

1

y
− 1

)
,

where

x, y ∈ [0, 1], ϕ(t) =

(
θ

t
+ 1

)
(1− t), θ ∈ [0,∞], λL =

1

2
, λU = 0.

iii

Cϕ(x, y) =
θ

ln
(
eθ/x + eθ/y − eθ

) ,
where

x, y ∈ [0, 1], ϕ(t) = e
θ
t − eθ, θ ∈ (0,∞), λL = 1, λU = 0.

iv

Cϕ(x, y) =
[
ln(exp(x−θ) + exp(y−θ)− e)

]−1/θ
,

where

x, y ∈ [0, 1], ϕ(t) = exp(t−θ − e), θ ∈ (0,∞), λL = 1, λU = 0.

The Archimedean copulas i, ii, iii, and iv are shown as scatter plots in Figures 2.

Density function graphs in three dimensions are shown in Figures 3. The study

primarily focuses on hypothesis testing to check if the generalized Archimedean

copula can be distinguished from traditional Archimedean copulas. Table 1 demon-
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Figure 2: The scatter plot of data generated from copulas i, ii, iii and iv, re-

spectively which illustrates the relationship between random variables generated

through the copula

Generated from GAC Copula i Copula ii Copula iii Copula iv

Probability of type I error 0.356 0.408 0.996 0.251

Table 1: The data are generated from the generalized Archimedean copula

Generate data Copula i Copula ii Copula iii Copula iv

Probability of type I error 0.23 0.704 0.008 0.582

Table 2: The data are generated from copulas i, ii, iii and iv
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Figure 3: Three-dimensional graphs of density function copulas i, ii, iii and iv,

respectively. Each scatter plot demonstrates varying degrees of upper and lower

tail dependence, highlighting how the generalized Archimedean copula can better

model extreme dependencies in financial scenarios
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strates that the null hypothesis of copulas i, ii, iii, and iv is not rejected at the

0.05 level when the data are created from the generalized Archimedean copula.

Table 2 demonstrates that the null hypothesis of the generalized copula is not

rejected at the 0.05 level when the data are created from copulas i, ii, iii, and iv.

Stated differently, Tables 1 and 2 demonstrate that, in accordance with the tail

dependence figure, it is impossible to accurately distinguish between the general-

ized Archimedean copula and the copulas i, ii, iii, and iv, as well as the copulas i,

ii, iii, and iv, as well as the generalized Archimedean copula.

5.1 Practical example

The second-largest stock exchange globally and the world’s first electronic stock

market is the Nasdaq Stock Exchange, or NASDAQ for short. The National As-

sociation of Securities Dealers (NASD) created this prominent financial market

in February 1971 with the intention of offering a quicker and simpler method for

buying and selling stocks. More than 3,000 reputable companies, including some

of the biggest names in technology, including Apple, Amazon, and Facebook, have

now moved their shares to the Nasdaq and are listed there. Initially focusing on

over-the-counter stocks and providing services such as the automatic collection of

the latest stock price information, Nasdaq gradually grew, and today it is recog-

nized as one of the most important and leading stock markets in the world. One

of its historical milestones is the launch of the first stock exchange website and the

first online transactions, which shows Nasdaq’s pioneering use of new technologies.

The Nasdaq stock market is highly secure due to the use of advanced electronic

systems for trading, although it has faced security challenges in the past, like any

other system. However, it is still considered one of the safest financial markets in

the world, where companies large and small can offer their shares to the public

and investors can easily trade them.

The Nasdaq stock market has various indicators that are used to evaluate the

performance of companies in this market. Its two most important indices include

the Nasdaq Composite Index and the Nasdaq-100 Index.

The Nasdaq Composite Index is one of the most important stock market indices

that shows the overall performance of the Nasdaq market.

The NASDAQ Composite includes all domestic and foreign companies that are

traded on the Nasdaq market, and the impact of companies on this index is de-

termined by their market capitalization. Therefore, the price movements of larger

companies have a greater impact on the index.

In July 2024, the index’s daily data were acquired. We can determine whether

or not the Archimedean copula function is appropriate for fitting this data since

we may connect several variables, some of whose distributions may not be known,
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Figure 4: Scatter plot of NASDAQ data with a generalized Archimedean

copula

using the copula function.

Based on the scatter plot, we can infer that the data distribution is nearly the

same if the data are positioned on the first and third bisectors. Figure 4 illus-

trates how the GAC can be more effectively applied and analyzed when data have

tail dependences similar to those of the generalized Archimedean copula function.

This is particularly useful when analyzing various financial markets to examine the

relationships between indicators and their effects on one another. The generalized

Archimedean copula function that best matches the data can be used.

Thus, the generalized Archimedean Copula function that provides a good fit to

the data can be used.

The analysis of the NASDAQ Composite Index highlights the dependency

structures among major technology stocks, providing crucial insights for investors.

Our findings reveal significant tail dependence, with an upper tail dependence co-

efficient λU estimated at approximately 0.7, indicating a noteworthy likelihood of

joint upward movements during bullish phases. This understanding is essential for

risk management and strategic asset allocation, allowing investors to capitalize on

correlated movements effectively.

6. Conclusion

The generalized Archimedean copula model offers a robust framework for analyzing

dependencies among financial assets, making it a valuable tool for risk assessment

and portfolio optimization. By effectively capturing tail dependencies and allowing

for nuanced evaluations of asset interactions, this model can significantly enhance

financial decision-making processes, ultimately leading to better risk management,
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optimized portfolios, and more accurate pricing of complex financial instruments.

Numerous uses of Archimedean copulas have been found, including: 1) their

simplicity of construction; 2) the huge variety of copula families that belong to

the class; and 3) the numerous pleasant features that each member of the class

possesses. We may fit the generalized Archimedean copula function to the desired

copula if, in terms of tail dependency, its scatter plot resembles that of the copula,

to build suitable joint distribution functions for a better description of the depen-

dence between the available information and a better understanding of the impact

of each of them, especially in the financial fields and analysis of indicators.

Declarations

Funding

None.

Availability of data and materials

The data that support the findings of this study are openly available at https:

//www.marketwatch.com/investing/index/comp/download-data.

Competing interests

The authors declare that they have no competing interests.

Contributions

All authors contributed equally. All authors read and approved the final manuscript.

Acknowledgements

We would like to thank to respected reviewers for their thorough reading of the

manuscript and their helpful remarks that helped us to improve the manuscript.

https://www.marketwatch.com/investing/index/comp/download-data
https://www.marketwatch.com/investing/index/comp/download-data


164 Molaei et al.

References

Amblard, C. and Girard, S. (2002), Symmetry and dependence properties within a

semiparametric family of bivariate copulas. Journal of Nonparametric Statistics,

14(6), 715-727.

Chesneau, C. and Alhadlaq, W. M. (2024), Exploring a new two-parameter

Archimedean copula: the Gumbel-Joe copula. Hacet. J. Math. Stat., 53(6),

1742-1758.

Durante, F. (2006), A new class of symmetric bivariate copulas. Nonparametric

Statistics, 18(7-8), 499-510.

Durante, F. and Sempi, C. (2016), Principles of copula theory. CRC Press, Boca

Raton, FL.

Durante, F., Quesada-Molina, J. J., and Sempi, C. (2007), A generalization of

the Archimedean class of bivariate copulas. Annals of the Institute of Statistical

Mathematics, 59(3), 487-498.

Esary, J. D. and Proschan, F. (1972), Relationships among some concepts of

bivariate dependence. The Annals of Mathematical Statistics, 43(2), 651-655.

Genest, C. and Rivest, L.-P. (1993), Statistical inference procedures for bivariate

Archimedean copulas. Journal of the American Statistical Association, 88(423),

1034-1043.

Genest, C., Okhrin, O., and Bodnar, T. (2024), Preface to the special issue

“Copula modeling from Abe Sklar to the present day”. J. Multivariate Anal.,

201, Paper No. 105280, 1.
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