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Abstract: This study introduces a tailored recommendation system aimed at en-

riching Iran’s tourism sector. Using a hybrid model that combines neural collabo-

rative filtering (NCF) with matrix factorization (MF), our approach leverages both

demographic and contextual data of the combined tourist-landmark (4177 samples)

to provide personalized tourism recommendations. Empirical evaluations on the

implemented methods show that the hybrid model outperforms factorization tech-

niques, achieving a test F1 score of 0.84, accuracy of 0.90, and a test error reduction

from 0.83 to 0.37. Feature vector integration further improved test recall by 17%,

underscoring the model’s robustness in capturing user-item relationships. Further

analysis using t-SNE as well as visual analyses of embedding structures confirm the

system’s ability to generalize patterns in latent space; thereby, mitigating the cold-

start problem for new tourists or unvisited landmarks. This study also contributes

a structured dataset of Iranian landmarks, user ratings, and supplementary contex-

tual data for fostering future research in culturally specific intelligent recommender

systems. For implementation details, refer to the GitHub repository at https:

//github.com/MsainZn/Collaborative_Filtering_Tourism_Landmarks.
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1. Introduction

Iran’s tourism industry has become a hidden gem, with its rich historical sites and

diverse natural landscapes making it an ideal destination for cultural and nature

tourism. Cities like Isfahan, Shiraz, and Kurdistan showcase Iran’s historical and

cultural heritage, while regions such as Gilan, Mazandaran, and Azerbaijan offer

stunning natural beauty as well as serve as special tourist destinations.

Despite the variety of attractions, tourists struggle to discover their interests,

relying on limited recommendations or inflexible technologies like expert systems,

resulting in suboptimal experiences and missed opportunities for personalized ex-

ploration (Zolfagharnasab et al. (2025)). Over the past years, progress in this

area has been limited due to four main issues: a lack of open datasets, intense

market competition, outdated systems in existing studies, and privacy concerns

discouraging data sharing.

Given the outlined limitations, this study undertakes four fundamental objec-

tives to address the described challenges:

• Introducing a native dataset. Collecting a sufficient, standard dataset

of Iranian tourist spots along with user ranking scores to facilitate future

research and system development in the tourism sector.

• Comparing different methods. Evaluating and comparing various rec-

ommendation techniques, from matrix factorization up to neural-based mod-

els, to determine the most effective approach for tourism recommendations.

• Addressing the cold-start problem. Utilizing implicitly learned vector

embeddings to overcome the cold-start problem for new users and landmarks,

ensuring effective recommendations even with limited initial data.

• Feasibility of pre-trained models. Investigating the potential of using

pre-trained models to enhance the accuracy and efficiency of the recommen-

dation system.

With these objectives in mind, the remainder of this study is structured in

seven more sections. Section 2 presents the literature review, covering relevant

studies in the field and providing benchmarks for comparison. Section 3 introduces

the collected dataset, followed by the necessary preprocessing steps in Section 4.

The proposed method is outlined in Section 5, explaining the methodology, imple-

mentation, and evaluation metrics. Section 6 presents the results and discussion,

detailing the experimental results and their analysis. Finally, Section 7 provides

the conclusion, summarizing key findings and suggesting potential future research

directions. For more interested readers, the statistical analysis performed on the

dataset is also presented in the Appendix.
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2. Related Work

Collaborative filtering (CF) has a profound impact on consumer decisions, making

it a central focus of research, particularly in personalized retrieval systems (Ricci

et al. (2015)). This area of study has consistently attracted a diverse range

of researchers due to its critical role in generating recommendations that align

with individual user preferences. As a foundational technology in industries like e-

commerce, entertainment, and social media, CF is essential for delivering tailored

experiences and driving user engagement (Schafer et al. (2007)).

The initial breakthroughs in CF models came with the development of Matrix

Factorization (MF) techniques (Koren (2009)). These techniques addressed the

challenge of sparsity in the user-item interaction matrix by transforming it into

lower-dimensional hidden embeddings. These embeddings captured latent factors

that represented the underlying relationships between users and items, thus allow-

ing the system to predict interactions even in cases where explicit data was sparse.

Matrix factorization helped uncover patterns that were not immediately visible,

making it a crucial step in personalized recommendations (Mnih and Salakhutdi-

nov (2008)).

Despite their success, the reliance of MF-based approaches on linear interac-

tions between latent factors limited their ability to capture complex, non-linear

relationships (Rendle (2010)). This limitation spurred further research into more

sophisticated methods, including Neural Collaborative Filtering (NCF), which

leveraged the flexibility of neural networks to model the non-linear interactions

between users and items (He et al. (2017)). By using neural networks, NCF al-

lowed for more accurate predictions, particularly in sparse data scenarios or when

modeling highly complex user preferences (Cheng et al. (2016)).

Due to the capabilities and potential of the NCF approach in modeling complex

user-item relationships, variations of this method, such as DeepFM (Guo et al.

(2017)), Neural Attention Collaborative Filtering (Chen et al. (2017)), and Graph

Neural Collaborative Filtering (Wang et al. (2019)), quickly found their way into

industry. These models are particularly effective in handling large-scale, sparse

datasets while incorporating additional features such as user demographics, be-

havior patterns, and item characteristics, thus improving the overall relevance and

engagement of the recommendations provided to users. In addition to the standard

functionality, tech companies like Amazon, Netflix, and Facebook complemented

their baseline models with feature extraction models for processing multi-modal

inputs (audio, video, pictures, etc.) to enhance their recommendation engines,

enabling them to provide more personalized and accurate content recommenda-

tions (Zhou et al. (2018)). Studies in this area are also found interesting and

fruitful due to the development of Large Language Models (LLMs) and Vision
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Transformers for guiding information retrieval (Zolfagharnasab et al. (2024)).

Nevertheless, it should be noted that the CF component is yet to be the primary

part that associates the user-item relation, and the LLMs and feature extractors

are generally used to provide more semantic information.

Despite the described evolution (from matrix factorization to neural-based ap-

proaches), studies such as Ferrari Dacrema et al. (2019) have also provided

invaluable arguments, highlighting persistent issues, including weak baselines, in-

adequate hyper-parameter tuning, and challenges in comparing methods across

diverse datasets as factors that might change the scale in favor of traditional MF

methods as well. As a result, the research community is advised to assess the ef-

fectiveness of the CF methods based on the application’s context and the problem

description.

In tourism applications—the focus of this study—the impact of Recommender

Systems (RS) has been profound, as they play a crucial role in guiding travel-

ers toward personalized experiences (Fesenmaier et al. (2006)). Many studies

have examined the role of CF in improving the effectiveness of tourism recom-

mendations. For instance, in the study by Zanker et al. (2008), the authors

explored how collaborative filtering can be used to tailor recommendations for

tourism packages, showing that CF-based approaches significantly improve user

satisfaction by matching individual preferences with travel itineraries. In another

example, Ricci and Del Missier (2011) conducted a study that examined the use

of CF in tourism, where the system was employed to suggest personalized desti-

nations based on the preferences of similar users. Their work demonstrated that

CF not only enhances the quality of recommendations but also increases user en-

gagement by offering a more interactive and user-friendly experience. Similarly,

Kabassi (2010) explored the use of CF in cultural tourism, where recommen-

dations were personalized based on user interests in various cultural landmarks.

The study demonstrated that CF-based recommendation systems help increase

user satisfaction by suggesting culturally relevant sites and improving the overall

tourism experience.

These examples underscore the importance of RSs in the tourism industry,

where personalized travel experiences have become essential for enhancing cus-

tomer satisfaction and driving engagement. Unfortunately, in terms of native

works, there is a notable scarcity of research and development within local con-

texts, which can be traced back to the unavailability of open datasets. This gap

highlights the need for more targeted efforts in developing native datasets, models,

and approaches that address the unique preferences and behaviors of tourists, as

well as the diverse range of tourist attractions within the country.
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3. Dataset

The dataset used in this study comes from domestic trips organized by a private

travel agency, which stored the information in Excel files. Due to industry com-

petition and privacy concerns, data from the past four years (since the COVID-19

pandemic) has been withheld, and the dataset covers the period from 2012 to 2020.

The dataset includes essential details such as the name of the visited landmark,

users’ city of birth, date of birth, and the rating assigned to the attraction (1–5).

To increase flexibility and ensure consistency with standard database formats, the

dataset is divided into three distinct tables: user information, tourist landmark

data, and a rating table. The general dataset properties are presented in Table 1,

and the CSV files corresponding to the tables are also published in Repository.

The following section offers a more detailed analysis of the statistical information

within the dataset.

Table 1: General Dataset Properties

Table Column Information Count Size

Landmark ID, Name, Category, City, Province, Payment 309 17 KB

Tourist (user) ID, City, Province, Age 200 5 KB

Rating ID, Attraction ID, User Rating 4177 42 KB

4. Data Preprocessing

This section outlines the preprocessing steps carried out to prepare the dataset for

subsequent model implementations.

Age Binning. The continuous age data was discretized into specific age

groups. Tourists are classified into three categories: young (20–39), middle-aged

(40–59), and elderly (60 and above). This classification is based on the approxi-

mate retirement age and societal norms within Iranian culture.

Price Categorization. Landmark ticket prices were divided into three cate-

gories: free, inexpensive (under 500K), and expensive (over 500K) IR-Rials. This

categorization is based on the principle that the landmark ticket fee should not

exceed 10% of the average hotel price, which is around 5M IR-Rial per night.

Encoding Categorical Features. To enable efficient processing during model

training, each categorical feature was converted into numeric labels. Table 2 shows

the encoding scheme applied to each feature. Although tourist and landmark IDs

were encoded earlier, they are included in the table for completeness. A dictionary

data structure was used to manage these transformations, ensuring the reversibility

https://github.com/MsainZn/Collaborative_Filtering_Tourism_Landmarks/tree/master/dataset
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of the changes.

Table 2: Feature Encoding Used in the Dataset

Feature Name Original Data Encoded Format

Age Young, Middle-aged, Elderly [0, 1, 2]

Provinces 31 provinces labeled with words [0, 1, ..., 30]

Cities 117 cities with tourist attractions [0, 1, ..., 116]

Prices Free, Inexpensive, Expensive [0, 1, 2]

Categories Historical, Natural, Cultural, Recreational, Architectural [0, 1, 2, 3, 4]

Tourist IDs 200 tourists in the dataset [0, 1, ..., 199]

Landmark IDs 309 tourist attractions in the dataset [0, 1, ..., 308]

Data Splitting. The standard random data splitting method is unsuitable for

RS, as such systems are not explicitly trained to predict for completely new users

or items. Instead, a masking technique is employed, in which part of a user’s data

is hidden during training and revealed during testing. This ensures that all users

and items are present in both phases, allowing for accurate system evaluation. In

this study, 80% of each user’s ratings were used for training, while the remaining

20% were reserved for testing, ensuring robust performance evaluation.

Following the described preprocessing steps, the dataset is prepared for pipelin-

ing into the models and generating recommendations.

5. Proposed Method

This section details the proposed methods, covering key aspects such as math-

ematical modeling, key parameters, and model implementation. The techniques

used range from traditional mathematical methods like matrix factorization to

modern architectures like the tower model. The aim is to establish a foundation

for comparing different collaborative filtering and hybrid models in later chapters.

Standard matrix factorization (MF) is a technique that decomposes the user-

item rating matrix R into two lower-dimensional matrices representing latent fac-

tors of users and items. The goal is to find two matrices, P ∈ Rm×k and Q ∈ Rn×k,

where m and n are the numbers of users and items, respectively, and k is the di-

mension of the latent factors (embedding vectors). The predicted rating r̂ui for

user u and item i is calculated as the dot product of the user and item latent

vectors, as shown in Eq. (5.1):

r̂ui = P>u Qi =

k∑
f=1

PufQif , (5.1)



Intelligent Travel Recommendations for Iran’s Landmarks 125

where Pu and Qi are the user-specific and item-specific latent vectors, respec-

tively. The optimization objective is to minimize the difference between the pre-

dicted ratings r̂ui and the actual ratings rui by minimizing the squared error loss,

as in Eq. (5.2):

L =
∑

(u,i)∈K

(rui − r̂ui)2 + λ

(∑
u

‖Pu‖2 +
∑
i

‖Qi‖2
)
, (5.2)

where K is the set of known user-item interactions, and λ is a regularization

term that prevents overfitting by controlling the magnitudes of the learned latent

vectors. The key parameter in this technique is the embedding dimension k, which

determines the size of the latent factors Pu and Qi. However, the standard MF

model has several limitations:

• No Contextual Information: It only estimates ratings without incorpo-

rating additional contextual information such as item descriptions or user

preferences.

• No Bias or Initialization Control: It does not account for user or item

biases, proper weight initialization, or constraints to ensure valid rating pre-

dictions within a specified range.

• Cold-Start Problem: It lacks mechanisms to handle scenarios where new

users or items have insufficient historical data for accurate predictions.

To address these limitations, several modifications were implemented in the

Modified Matrix Factorization (MMF) model. These include the introduction of

user and item bias terms, a global bias, weight initialization, and the use of a

sigmoid function. The prediction formula of MMF is given by Eq. (5.3):

r̂ui = 5.5 · σ(µ+ bu + bi + P>u Qi), (5.3)

where µ is the global bias, bu and bi are the bias terms for user u and item

i, and σ is the sigmoid function. This formulation incorporates biases, improved

weight initialization, and prediction normalization to enhance accuracy and sta-

bility. Despite these improvements, MMF still lacks the ability to incorporate

additional user and item information or address the cold-start problem.

To overcome these challenges, Factorization Machines (FM) were implemented.

FM extends MMF by modeling pairwise interactions between features, enabling

more complex and flexible modeling. Unlike MMF, FM can incorporate contextual

information about users and tourist attractions, thereby addressing the cold-start

problem through content-based filtering techniques. The prediction function of

FM is defined in Eq. (5.4):
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ŷ(x) = w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

〈vi,vj〉xixj , (5.4)

where w0 is the global bias, wi is the weight for the i-th feature, and 〈vi,vj〉 =

v>i vj represents the interaction between the latent vectors of features i and j. The

terms xi and xj correspond to the values of the input features. By embedding

features into latent vectors, FM can effectively generalize to previously unseen

users and items. Different embedding vectors were assigned to each input feature,

as outlined in Table 3.

Table 3: Summary of Embedding Parameters (Model Inputs)

Feature Name Embedding Dimension Trainable Parameters

Age 4 4× 3

Provinces 8 for user, 8 for item 16× 200

Cities 8 for user, 8 for item 16× 117

Cost 4 4× 3

Landmark Categories 4 4× 5

Tourist IDs 16 16× 200

Landmark IDs 16 16× 309

Total 76 13,260

Despite these advantages, FMs are limited to modeling only pairwise inter-

actions and are incapable of capturing non-linear relationships among features.

To address this limitation, Generalized Factorization Machines (GFM) were im-

plemented. GFM extends the capabilities of FM by introducing more flexible

interaction functions capable of modeling non-linear and higher-order interactions

among features. The GFM prediction function is defined in Eq. (5.5):

ŷ(x) = w0+

n∑
i=1

wixi+

n∑
i=1

n∑
j=i+1

Φ(vi,vj)xixj+

n∑
i=1

n∑
j=i+1

n∑
k=j+1

Ψ(vi,vj ,vk)xixjxk+. . . ,

(5.5)

where Φ and Ψ represent generalized functions that model interactions between

latent vectors. In this study, triplet interactions were considered, and a non-linear

Rectified Linear Unit (ReLU) function was applied, as formulated in Eq. (5.6):

Φ(vi,vj ,vk, . . . ) = σ(W[vi; vj ; vk; . . . ] + b), (5.6)

where σ denotes the ReLU activation, W is the weight matrix, and b is the

bias vector. While GFM is capable of modeling both linear and non-linear feature
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interactions, it remains limited by the number of interactions that can be feasibly

computed.

To overcome these constraints, neural networks (NN) were utilized due to their

ability to capture complex, non-linear relationships between users, items, and ad-

ditional features. Unlike MF or GFM, which rely on predefined interaction struc-

tures, NNs can learn these patterns directly from the data through multiple hidden

layers and non-linear activation functions (Zolfagharnasab and Damari (2024)).

In this study, a neural network architecture with five layers was implemented. The

input consists of the embedding vectors for users and items (Eu and Ei), and the

hyperbolic tangent (tanh) function is employed as the activation. The properties

of the layers are presented in Table 4.

Table 4: Architecture of the Neural Network-Based Model

Layer Number Input Size Output Size Bias Size Num. Parameters

Layer 1 76 128 128 9,856

Layer 2 128 32 32 4,128

Layer 3 32 16 16 528

Layer 4 16 8 8 136

Final Layer 8 1 1 9

Embedding - - - 1,632

Total - - - 16,289

While neural networks encapsulate the strengths of earlier methods, studies

such as Ferrari Dacrema et al. (2019) have highlighted their instability during

training, which can lead to inconsistent performance.

To mitigate these issues, a hybrid model—commonly referred to as the tower

architecture—was implemented for user-item modeling. As illustrated in Figure 1,

this architecture integrates the strengths of both Matrix Factorization (MF) and

Neural Networks (NN) by leveraging their respective embedding vectors. This

design aims to effectively capture both linear and non-linear relationships between

users and items, thereby enhancing predictive reliability and overall accuracy. The

configuration details of the tower model are presented in Table 5.

By combining GMF and NN, the hybrid model is capable of capturing a broader

spectrum of interactions and patterns in the data. This integration addresses the

limitations inherent in individual models and provides a more robust and accurate

recommendation framework.
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Figure 1: A schematic of the tower model (adapted from He et al. (2017)).

Table 5: Hybrid Model (Tower Architecture) Properties

Layer Component Input Size Output Size Number of Parameters

Matrix Factorization (GMF) 76 1 13,260

Neural Network 76 1 29,549

Final Merging Layer 2 1 2

Total – – 42,811

6. Results and Discussion

This section presents an analysis and evaluation of the performance of the im-

plemented models. First, the accuracy and reliability of the models’ predictions

are assessed to validate the core functionality of the recommender system (RS). A

comparative analysis is then conducted using feature vectors. Finally, two critical

issues are examined: the feasibility of employing pre-trained models and strategies

for addressing the cold-start problem.

6.1 Model Comparison

Figure 2 illustrates the performance trends of the implemented models across 200

epochs. The training error curves exhibit a consistent decline for all models as

training progresses, indicating effective learning. Models such as standard MF and

NN converge rapidly in the initial epochs, demonstrating efficiency in minimizing

error. In contrast, GFM shows slower convergence, likely due to its increased

computational complexity. Notably, the hybrid (Tower) model achieves the lowest

training error, underscoring its superior ability to extract meaningful patterns
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from the data.

Test error trends follow a similar pattern, albeit with variability in convergence

rates. The standard MF model shows a relatively gradual decrease in error, high-

lighting its limited capacity to generalize to unseen data. This is expected given

its simplicity and constrained feature interaction capabilities. In contrast, GMF,

NN, and the Tower architecture attain substantially lower test errors, indicating

stronger generalization performance. Eventually, all models stabilize, suggesting

effective mitigation of overfitting, supported by prior hyperparameter tuning.

The accuracy metrics across training and test phases reveal additional insights.

While most models demonstrate progressive accuracy gains with increasing epochs,

MF and FM display some fluctuations, suggesting potential difficulty in consis-

tently balancing precision and recall. On the other hand, NN and Tower models

maintain higher and more stable accuracy levels, indicative of their robust predic-

tive performance.

Recall values mirror the trends seen in accuracy, with GMF and Tower models

outperforming others in both training and testing sets. These results imply better

identification of true positives, a critical factor in recommendation quality.

Finally, the F1 score, which harmonizes precision and recall, improves steadily

for all models throughout training and testing. The Tower architecture achieves

high F1 scores early, reflecting its effectiveness in balancing false positives and

false negatives. GMF and FM exhibit more gradual gains, likely due to slower

convergence in this balance. The test F1 scores show close competition between

the Tower and NN models, with the Tower model maintaining a slight edge.

In conclusion, the Tower architecture emerges as the top-performing model,

excelling across all key evaluation metrics including error reduction, accuracy,

recall, and F1 score. Its balanced design allows it to outperform other approaches

in capturing both linear and nonlinear user-item interactions. NN and GMF also

deliver strong results but fall slightly short of the hybrid model’s comprehensive

performance.

To facilitate a clearer comparison of the implemented models, Table 6 presents

a summary of evaluation metrics and the optimal performance achieved during

both the training and testing phases. Among the models, the Tower and NN

architectures consistently deliver superior results across key metrics. However,

the hybrid nature of the Tower model results in slightly longer training times

compared to simpler models such as MF, with the exception of GFM.

As anticipated from Eq. 5.5, the GFM model incurs increased training time

due to the computational complexity of modeling triadic feature interactions. De-

spite this added complexity, its relatively constrained nonlinear structure limits its

predictive power when compared to NN-based models. This observation reinforces
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Figure 2: Performance comparison of different models.

an important insight: greater computational demands do not necessarily translate

into improved model accuracy.

Table 6: Summary of model performance (train, test) across various metrics.

Model Name MF MMF FM GFM NN Hybrid

Error (0.300, 1.825) (0.191, 0.834) (0.520, 0.3716) (0.430, 0.596) (0.531, 0.389) (0.465, 0.384)

Accuracy (0.778, 0.576) (0.837, 0.545) (0.896, 0.861) (0.741, 0.671) (0.911, 0.880) (0.947, 0.896)

Recall (0.759, 0.631) (0.821, 0.589) (0.750, 0.761) (0.700, 0.667) (0.765, 0.777) (0.787, 0.775)

F1 Score (0.759, 0.599) (0.817, 0.555) (0.813, 0.804) (0.716, 0.666) (0.831, 0.828) (0.855, 0.837)

Training Time (s) 18.68 16.82 17.879 34.840 18.182 26.700

To further enhance interpretability, Figure 3 visualizes the simulation results as

discrete histograms for each model across all evaluation metrics. A key observation

is the similarity of evaluation metrics for the Tower and FM models across both

training and testing sets, underscoring their strong generalizability. Additionally,

the pronounced differences in error values and squared error metrics between the

standard MF and generalized MF models highlight the performance improvements

gained through feature augmentation. These disparities further emphasize the

contributions of enhancements such as boundary functions (e.g., sigmoid), refined

initialization strategies, and the inclusion of user and item bias terms.

6.2 Model Validation

While the evaluation metrics discussed earlier offer a broad overview of the mod-

els’ performance, they do not provide a detailed analysis of the reliability of the

predicted outputs. This section delves into this aspect of model validation.

Table 7 presents 40 randomly selected locations, along with their average user

ratings and the model’s predicted ratings. The results show that the estimated

ratings closely align with the actual ratings in the dataset, suggesting that the
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Figure 3: Performance comparison of different models using histogram.

model’s predictions are reliable. For example, high-traffic landmarks such as Imam

Reza Shrine and Naqsh-e Jahan Square exhibit predicted ratings that match the

real ratings, likely due to their higher number of user reviews.

On the other hand, locations like Birjand Palace exhibit significant discrepan-

cies between the actual and predicted ratings. This discrepancy can be attributed

to the small number of ratings (only three), which limits the model’s ability to

generalize effectively. For instance, Birjand Palace received two ratings of 1 and

one of 3, leading to distributional challenges that affect the prediction accuracy.

Figure 4: Comparing model average prediction with average of the actual ratings

for the visited landmarks.
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Table 7: Average Ratings vs Model Predictions for 40 Landmarks Selected from

Dataset

Location Pred Label Location Pred Label

Tange Tizab 2.855 2.8966 Imam Reza Shrine 4.0588 4.0671

Namakdan Cave 2.8181 2.8966 Naqsh-e Jahan Square 4.0652 4.0982

Zarivar Lake 2.8953 2.7931 Hafez Tomb 4.0555 4.156

Badab Soort Springs 2.8183 2.931 Pasargadae 4.056 4.0571

Nayband National Park 2.7801 2.5172 Ali Qapu Palace 4.0651 4.0673

Khorramabad River Valley 2.7838 2.7857 Khaju Bridge 4.0652 4.0297

Ashuradeh Island 2.8343 2.8571 Chehel Sotoun Palace 3.5324 3.56

Alangdareh Forest Park 2.7801 2.6429 Vakil Bazaar 3.0859 3.2887

Anzali Lagoon 2.7815 2.9643 Si-o-se-pol Bridge 4.0652 4.043

Pashtkouh Protected Area 2.7801 2.7407 Churt Lake 2.7801 2.7143

Birjand Palace 3.525 1.667 Falak-ol-Aflak Castle 3.014 2.333

Kal Jenni Valley 2.7817 2.7407 Dozdeh Cheshmeh 2.848 2.8529

Ghasemabad Forest 2.9606 3.0741 Rudkhan Spring 2.8874 2.8182

Hamun Lake 2.8354 2.5556 Kaboudval Waterfall 2.9168 3.0625

Ali Sadr Cave 3.1264 3.1923 Lar Dam 2.818 2.8667

Khorramabad Sarab 2.8185 2.7308 Golestan National Park 2.8169 2.9

Ferdowsi Tomb 3.014 4 Chaharfasl Bathhouse 3.014 4

Kish Island 3.014 2.6 Milad Tower 4.0641 4

Naqsh-e Rustam 3.434 3.6 Mugan Lagoon 3.277 3.5

Tabas Palace 3.853 3.2 Green Dome 2.780 2.333

To further visualize the model’s accuracy in predicting user scores, Figure 4

compares the model’s performance in estimating ratings for various landmarks

against the actual values. Consistent with the results in Table 7, the system

performs well for most popular landmarks, closely matching the real values. How-

ever, it exhibits higher errors for lesser-visited locations. For example, attractions

such as the Jameh Mosque of Qorveh, which has conflicting ratings (4, 1, and

1), demonstrate greater uncertainty, resulting in a larger deviation from the real

mean.

It is worth noting that enhancing model performance could be achieved by

excluding infrequent data points and outliers, potentially improving prediction

accuracy. However, this approach would involve removing lesser-visited locations,

which was not implemented in this study.

To gain a deeper understanding of our model’s performance, Figure 5 presents

a histogram of residuals alongside density plots for actual and predicted ratings.

The blue and red lines represent the densities of actual and predicted values,

respectively, while the black histogram illustrates the residuals, highlighting the

deviations between actual and predicted ratings. The density distributions of
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actual and predicted ratings are closely aligned, suggesting that our model effec-

tively captures the statistical properties of the dataset. The residuals are centered

around zero, indicating generally good performance. However, the deviations in

the histogram also reveal some prediction errors, primarily due to the decision not

to remove outliers. Additionally, the system tends to assign an average score of

3 to items with limited information (i.e., few records). This behavior could be

improved by either increasing the data volume or excluding records with low data

counts, although this was not done due to the limited size of the dataset.

Figure 5: Histogram of residuals and density of actual vs. predicted ratings.

For the final assessment, Figure 6 presents a Bland-Altman plot, a technique

for comparing the differences between actual and predicted values against their

mean. In this plot, the vertical axis shows the differences, while the horizontal

axis displays the mean. The dashed red line at zero represents the mean differ-

ence, with gray dashed lines indicating the 95% agreement limits. Data points

are shown as blue dots, where a concentration near the horizontal axis indicates

small discrepancies, and higher densities above the red line suggest larger errors.

Most data points cluster around the mean difference line, indicating that system

predictions are generally accurate. However, points farther from this line signify

larger prediction errors, with positive differences representing over-predictions and

negative differences representing under-predictions.

With confidence in the reliability of the predictions, the next section explores

the feasibility of pre-training in the hybrid model.
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Figure 6: Bland-Altman plot comparing mean real and predicted ratings.

6.3 Impact of Pre-training

Based on existing literature, leveraging pre-trained components enables the imple-

mentation of independent training strategies, accelerates convergence, improves

generalization, and enhances user-item pattern recognition (Zolfagharnasab et al.

(2024)). With this in mind, the objective of this section is to assess the impact

of pre-trained components on the performance of the hybrid model. Given the

dataset and model sizes, it is important to note that even slight performance im-

provements or declines can have a more noticeable impact in larger-scale projects.

To evaluate the impact of pre-training, we established four scenarios: (1) the

hybrid model is trained from scratch, with all parameters initialized anew; (2) the

NN is trained first, then frozen, followed by training the tower model, where only

the independent parameters of the hybrid and FM models are updated; (3) the

process is reversed for the FM: the FM is trained and frozen first, then only the

independent parameters of the hybrid model and NN are updated; (4) the pre-

trained parameters of both the FM and NN are frozen, allowing only the limited

parameters of the hybrid model to be tuned during training.

As shown in Figure 7, pre-training notably influences the convergence trajec-

tory of our models, ultimately enhancing their performance. Initially, the loss

curves indicate that all models exhibit decreasing loss over time. However, it is

noteworthy that the fully pre-trained models (Scenario 4) and the FM (Scenario

3) converge more quickly, starting with lower error rates. This suggests that the

FM model contributes more to convergence delays in this architecture compared

to the NN model, which leads to a greater loss in system performance. This occurs

because the FM model inherently lacks the capability to model multidimensional,
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Figure 7: Impact of pre-training hybrid components on overall performance.

nonlinear relationships. Once the FM parameters are frozen (post-initial train-

ing), its flexibility to integrate with the NN model is removed, resulting in a more

substantial performance loss and increased sensitivity to overfitting in Scenario 3.

The precision and recall graphs further illustrate the superiority of the pre-

trained models, particularly the fully pre-trained model (Scenario 4), over the

others. This advantage is crucial for large-scale and industrial applications, as it

indicates the model’s robustness against overfitting observed in the other scenarios.

However, fluctuations in this model’s performance persist up to epoch 60, as it

seeks to balance outputs from the base models. Despite this, the F1 score charts

show that the fully pre-trained (Scenario 4) model consistently outperforms the

other models, demonstrating that separately pre-training the base models not

only mitigates negative impacts on system performance but also slightly enhances

performance metrics and increases resistance to overfitting.

6.4 Cold-Start Treatment

The cold-start problem is a key challenge in CF approaches, particularly when

encountering new users, items, or contexts without historical interaction data.

In such cases, traditional CF methods struggle, as they depend on past user-

item interactions for accurate recommendations. To alleviate this issue, models

usually incorporate additional contextual data, such as user demographics or item

features, allowing the system to infer preferences based on similar user or item

characteristics, which enhances recommendation accuracy even in the absence of

prior interactions.

Table 8 demonstrates the impact of incorporating feature vectors on enhanc-

ing the matrix factorization model’s performance. The results show that, although

training metrics slightly decrease, the model’s generalization on the test set im-

proves significantly. For example, adding feature vectors reduces the test error
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Table 8: Impact of Feature Vectors on Model Performance (Training, Testing)

Model Error Precision Recall F1 Score

Without Feature Vectors (0.191, 0.834) (0.837, 0.545) (0.821, 0.589) (0.817, 0.555)

With Feature Vectors (0.520, 0.371) (0.896, 0.861) (0.750, 0.761) (0.813, 0.804)

Difference (0.329, 0.462) (0.06, 0.316) (0.071, 0.172) (0.004, 0.249)

from 0.834 to 0.371 and boosts test accuracy from 0.545 to 0.861, indicating the

model’s increased capacity to capture complex interactions and improved general-

ization. In short, the use of feature vectors raises the F1 score in the test set from

0.555 to 0.804, achieving a 25% improvement in balancing precision and recall.

These results confirm that feature vectors enhance the model’s understanding of

user-item relationships and significantly improve generalization and performance

on unseen data.

Figure 8: Impact of utilizing additional features (excluding user & landmark IDs).

To better visualize this impact, Figure 8 demonstrates how incorporating addi-

tional feature vectors enhances the model’s performance. As shown, the addition

of supplementary feature vectors notably reduces error while boosting accuracy,

recall, and F1 score, indicating improved learning and greater generalizability.

Furthermore, minor variations in the training set suggest that the model with

feature vectors is capturing deeper patterns within the data.

Having confirmed the effectiveness of supplementary demographic informa-

tion on the model’s performance metrics, the next phase involves analyzing the

embedded vectors, which provide valuable insights into user-item relationships

within the latent space. To achieve this, the embedded vectors are mapped into a

two-dimensional space using the t-distributed stochastic neighbor embedding (t-

SNE) technique. Unlike common methods, such as Principal Component Analysis

(PCA), t-SNE preserves local structures and relative distances between neighbor-

ing points, making it particularly well-suited for capturing non-linear relationships.
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(a) User Age (b) Landmark Visiting Fee

(c) User-ID (d) Landmark-ID

Figure 9: Models Perception concerning the features.

Regardless of the reduction technique, Figure 9 illustrates how the input data

is clustered in the embedding space based on various input features, such as de-

mographic information. Upon observing the reduced feature space, it is evident

that the mapping for all inputs is consistent. However, a closer inspection reveals

that similar features tend to be clustered together. For instance, data related

to users’ age shows that young and middle-aged individuals are grouped closely.

Similarly, in the cost-related chart, items are clustered into distinct categories of

free, low-cost, and high-cost.

Table 9: Assessing RS Recommendations with Sporadic Inputs (Cold-Start)

Input Type Input Details 1st Rec. 2nd Rec.

Location Kish Island Neor Lake Ashuradeh Island

User Age Sites Suitable for Seniors Tabriz Historic Bazaar Shushtar Hydraulic System

Cost Low-Cost, High-Rated Sites Sepahdar School Besh Gardesh

Notably, the clustering is not limited to auxiliary features and demographic
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vectors, as shown in Figure 9, where both user and item (tourist-location) data

also exhibit clustering. However, due to the large number of tourists and locations,

as well as provincial tourism, distinct labels could not be displayed; instead, color

coding was employed. Despite this, the results indicate a clear grouping among

users/items, showcasing the model’s ability to identify similar instances within

these groups. In summary, the embedded vectors are well-structured within the

model’s latent space, facilitating the differentiation and comparison of new tourists

or locations, which effectively addresses the cold-start problem.

By leveraging feature embedding vectors, this study addresses the cold-start

problem through four primary steps, given entries of i, where input information

can range from age groups, landmark categories, or other relevant features:

1. Map input information into the embedding space utilized by the RC.

2. Compare the similarity between the mapped data and new user/item entries.

3. Rank the information based on its similarity to the input data.

4. Present the ranked information to the user (tourist).

By following these steps, the system can generate effective recommendations

with minimal information on new inputs, thereby addressing the cold-start prob-

lem. For instance, given a new location similar to Kish Island or an older adult age

group, the system can recommend prominent sites and cost-effective, highly-rated

locations, as illustrated in Table 9. This concludes the investigations undertaken

in this study.

7. Conclusions

This study developed a recommendation system using neural collaborative filtering

to enhance tourism experiences in Iran by providing personalized suggestions based

on demographic and contextual data. Leveraging travel data from a travel agency,

it structured information on user demographics, landmarks, and ratings. The re-

search compared matrix factorization, neural networks, and a hybrid model, using

pre-training to improve accuracy and embedding vectors to address the cold-start

problem. Key findings include the introduction of a unique dataset for Iranian

tourism, a high-performing hybrid model with an F1 score of 0.84 and accuracy of

0.90, and a 17% improvement in recall due to feature integration. Embedding anal-

ysis confirmed the effectiveness of cold-start recommendations, while pre-trained

sub-models enhanced training efficiency and reduced overfitting. This research

establishes a foundation for future culturally specific tourism recommendation

systems by offering models, datasets, and baseline evaluations.
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Appendix: Statistical Analysis

We begin our dataset analysis by assessing the tourist landmark CSV, which con-

tains information on 301 tourist attractions in Iran. This table includes details

about the attractions, their categories, entrance ticket prices, and the cities and

provinces where they are located, offering valuable statistical insights. Figure

10 shows the distribution of attractions by category, with natural and cultural

sites being the most numerous, totaling around 100. Historical and architectural

landmarks follow, while recreational parks are less common, likely because travel

agencies prioritize natural and historical sites over parks.

Figure 10: Number of tourist spots per category in the dataset.

Next, we analyze the distribution of tourist attractions by province, as shown

in Figure 11. Historically significant provinces like Fars, Isfahan, and those known

for natural beauty, like Gilan, have the most attractions. In contrast, provinces

like Alborz and Markazi have fewer tourist spots.

Following the landmark CSV, we examined tourist information, including age

and residence, from the user information CSV. Figure 13 shows the distribution

of tourists by province. Tehran residents take the most trips, followed by those

from industrial provinces like East Azerbaijan, Isfahan, and Fars. This trend is

unsurprising, given factors such as income levels, population size, and lifestyle.

Less affluent areas and provinces with international borders report fewer trips,

possibly due to lower domestic travel interest.

Since the rating CSV contains only the tourist ID, attraction ID, and the rat-

ing given by the tourist, the data alone offers limited interpretability. However,

as shown in Figure 12, a rating of 3 is overwhelmingly the most frequent, suggest-
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Figure 11: Distribution of tourist spots by province.

Figure 12: Distribution of tourist ratings.

ing that many tourists were moderately satisfied with their visits. A rating of 3

typically corresponds to ”neutral” or ”average,” which is likely why a significant

number of users opted for this middle score. The second most common rating is

4, reflecting ”fairly good” satisfaction, indicating a generally positive experience

among tourists. Fewer tourists expressed extreme satisfaction (rating 5) or slight

dissatisfaction (rating 2), while the number of tourists who were entirely dissatis-

fied (rating 1) is relatively small. It is also notable that dissatisfied tourists tend

to give the lowest rating (1) rather than choosing a 2. Similarly, only a small per-

centage of tourists awarded the highest score (5), likely due to negative secondary
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Figure 13: Tourist distribution by place of residence.

factors during their travels.

It is also worth noting that the histogram in Figure 12 closely resembles a

normal (Gaussian) distribution, commonly seen in data derived from natural in-

teractions or complex systems. This suggests that the dataset follows a statistically

valid distribution, making it suitable for analysis with normal models.

Figure 14: Distribution of tourist ratings by category.

After analyzing each table individually, a combined statistical analysis of all

three datasets was conducted. The analysis begins by examining the distribution

of user ratings across different categories of tourist attractions, as represented by
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violin plots in Figure 14. As depicted, categories such as cultural, historical, and

architectural attractions tend to have higher average ratings compared to natural

attractions. While natural attractions have the lowest average rating, their distri-

bution forms a single peak centered around a rating of 3, indicating consistent user

feedback for this category. This consistency may suggest that services at natural

attractions are generally weaker, especially in open environments. In contrast, ar-

chitectural and historical attractions show narrower distributions, indicating more

uniform ratings. Furthermore, the broader distribution for recreational centers,

which have only four tourist spots, may appear larger due to the small sample size

and should not be mistaken for a typical statistical distribution.

Next, an important question regarding tourists’ preferences in relation to their

age was assessed, as shown in Figure 15. As expected, categories such as historical,

cultural, and architectural attractions tend to attract older tourists, particularly

those over the age of 50. In contrast, tourists visiting natural attractions are gen-

erally younger, with the majority falling within the 30 to 45 age range, suggesting

that younger individuals and families prefer these destinations. While natural at-

tractions display a broader age range, recreational parks show the lowest average

age. However, conclusions about this category are limited due to the small sam-

ple size. Overall, the presence of tourists from a wide range of age groups helps

minimize potential bias in training the recommendation system.

Figure 15: Tourist age distribution by category of tourist attractions.

To determine the most and least popular tourist destinations, a thorough sta-

tistical analysis of tourist ratings across attractions was conducted. The findings

indicated that prominent sites, such as the Tomb of Ferdowsi, Urmia Bazaar, and

Nasir al-Mulk Mosque, were the most visited and highly rated, receiving ratings

approximately 0.83 points above the overall average of 3.21. In contrast, lesser-
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known sites like the Green Dome and Falak-ol-Aflak Castle, with only a few ratings,

were among the least popular attractions, scoring 0.84 points below the average.

However, due to the limited number of ratings for these lesser-known locations, it

is difficult to draw reliable conclusions about their true popularity.

Figure 16: Distribution of tourist ratings for attractions with at least 20 ratings.

In light of this, Figure 16 emphasizes the importance of focusing only on tourist

attractions that have received at least 20 ratings when compiling lists of popular

and unpopular locations. This approach ensures that the preferences of a broader

audience are considered, minimizing the impact of individual subjective opinions.

As shown in the figure, highly frequented sites such as the Imam Reza Shrine,

Ali Qapu Palace, the Tomb of Hafez, Pasargadae, and the scenic area of Namak

Abrood stand out as some of the most popular destinations. In contrast, less

visited locations like Takht-e-Garah, Lake Namak Qom, and the natural area of

Bilesavar, each with approximately 20 ratings, are identified as the least popular,

scoring 0.75 points below the overall average. This underscores the importance

of considering both the volume of ratings and the average scores when evaluating

tourist destinations.

The final analysis focuses on identifying the most and least popular provinces,

as illustrated in Figure 17. This figure presents the average rating for each province

along with the number of ratings received. The provinces of Isfahan (529 ratings),

Fars (383 ratings), and Razavi Khorasan (218 ratings) emerge as the most popular
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Figure 17: Distribution of tourist ratings by province.

tourist destinations. This is likely due to the religious significance of the Imam

Reza Shrine in Razavi Khorasan and the abundance of historical and architectural

landmarks in Isfahan and Fars. Notably, despite attracting a significant number

of tourists, Tehran does not rank among the top-rated provinces, which aligns

with expectations. Provinces known for natural attractions, such as Gilan and

Golestan, also do not score highly, potentially due to lower service quality or

tourists’ preference for agency-organized tours. On average, most provinces do not

significantly deviate from the overall mean rating, indicating a relative uniformity

in tourist experiences across Iran’s provinces. This uniformity presents a challenge

for the recommendation system, which must enhance correlations between input

features to effectively differentiate tourist attractions and provinces.


	Introduction
	Related Work
	Dataset
	Data Preprocessing
	Proposed Method
	Results and Discussion
	Model Comparison
	Model Validation
	Impact of Pre-training
	Cold-Start Treatment

	Conclusions

