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Abstract:

Multi-label classification assigns multiple labels to each instance, crucial for

tasks like cancer detection in images and text categorization. However, machine

learning methods often struggle with the complexity of real-life datasets. To im-

prove efficiency, researchers have developed feature selection methods to identify

the most relevant features. Traditional methods, requiring all features upfront,

fail in dynamic environments like media platforms with continuous data streams.

To address this, novel online methods have been created, yet they often neglect

optimizing conflicting objectives. This study introduces an objective search ap-

proach using mutual information, feature interaction, and the NSGA-II algorithm

to select relevant features from streaming data. The strategy aims to minimize

feature overlap, maximize relevance to labels, and optimize online feature interac-

tion analysis. By applying a modified NSGA-II algorithm, a set of non-dominant

solutions is identified. Experiments on eleven datasets show that the proposed

approach outperforms advanced online feature selection techniques in predictive

accuracy, statistical analysis, and stability assessment.
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1. Introduction

Multi-label feature selection (MFS) is crucial for managing high-dimensional

labeled data, prevalent in applications like text classification, music tagging, im-

age recognition, and biology. In multi-label learning, each instance is associated

with multiple labels, often resulting in redundant features (Liu et al. (2021),

Shrivastava et al. (2020), Liang et al. (2022), Liang et al. (2019)). MFS aims

to improve prediction accuracy and model interpretability.

Dimensionality reduction, encompassing feature extraction and selection, ad-

dresses this redundancy. Feature extraction maps features to a lower-dimensional

space, creating new combined features (e.g., Xu et al. (2016), Yu et al. (2005),

Xu (2018)). Conversely, feature selection chooses a relevant and non-redundant

subset of original features.

MFS methods are categorized as filter, wrapper, and embedded. Filter meth-

ods evaluate feature subsets using information theory without classifier training

(Hatami et al. (2020), Seo et al. (2022)). Wrapper methods, while potentially

more accurate, require classifier training for each subset, incurring high computa-

tional costs (Zhang et al. (2017)). Embedded methods combine the advantages

of both (Zhu et al. (2018)).

Traditional MFS assumes all features are known a priori (Zhang et al. (2020),

Li et al. (2023), Huang et al. (2023), Wang et al. (2022)), which is often un-

realistic. In real-world scenarios, features may become available gradually, posing

challenges for real-time processing (e.g., video recognition) (Wu et al. (2012), Hu

et al. (2018), You et al. (2021), Gomes et al. (2019)).

Existing methods often require access to the entire feature space, limiting their

applicability to dynamic scenarios where features emerge over time (e.g., Twitter).

Online feature selection methods address this, including mutual information-based

approaches (Gonzalez-Lopez et al. (2019)), fuzzy-based streaming methods (Lin

et al. (2017)), and neighborhood rough set approaches (Liu et al. (2018)).

These methods prioritize features as they arrive. However, existing approaches

have limitations, including pre-algorithm data understanding, computational time,

complexity, and optimal feature number determination. Current methods also pri-

marily focus on single-label problems and often employ single-objective strategies,

whereas a multi-objective approach could be more effective.

Effective online multi-label streaming feature selection requires no prior do-

main knowledge, incremental feature updating, and acceptable classification per-

formance at each time instance.

This paper proposes a novel Multi-Objective Online Streaming Multi-Label

Feature Selection method, MIENS-FS, integrating feature interaction, mutual in-
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formation, and dynamic adaptation to streaming data. MIENS-FS focuses on

selecting relevant features and adapting to dynamic feature interactions, crucial

for real-time applications where the entire feature space is unavailable. The al-

gorithm efficiently updates the feature selection model with new data, avoiding

reprocessing the entire stream.

Unlike most previous approaches using a single objective function, this paper

uses the Pareto set to determine optimal features balancing relevance and redun-

dancy. The key contributions are:

• Dynamic Interaction: Defining feature interaction and assessing its in-

fluence across labels, MIENS-FS combines this with mutual information to

select interactive features.

• Multi-objective Approach: Unlike single-objective methods (e.g., Gonzalez-

Lopez et al. (2019), Lin et al. (2017), Liu et al. (2018), You et al. (2012)),

this method considers both relevance and redundancy.

• Integration of Mutual Information with NSGA-II: Using mutual in-

formation within the NSGA-II framework offers advantages over rough set

theory (Ma et al. (2022), Zou et al. (2021)) due to broader applicability

and lower computational complexity.

• Adaptive Mutation Strategy: An adaptive mutation strategy based on

feature-label mutual information enhances exploration.

• Pareto Front Analysis: Using the Pareto front for feature selection bal-

ances relevance and redundancy while considering feature interaction.

The paper is structured as follows: Section 2 reviews related work, Section 3

details multi-label learning and mutual information, Section 4 presents the pro-

posed methodology, Section 5 discusses experimental results, and Sections 6 and

?? conclude and outline future work.

2. Literature Review

Feature selection reduces the number of dataset features by removing unnec-

essary and redundant ones. Feature selection methods are classified as offline or

online, depending on whether a global feature space is assumed.

Offline feature selection methods assume a pre-established global feature space.

These are further divided into single-label (one label per instance) and multi-label

(multiple labels per instance) methods. Single-label methods include filter-based
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particle swarm optimization (Zhang et al. (2019)), multi-objective genetic algo-

rithms for text feature selection (MORDC) (Labani et al. (2020)), variable-size

cooperative coevolutionary particle swarm optimization (VSCCPSO) (Song et al.

(2020)), and graph clustering with ant colony optimization (Tabakhi and Moradi

(2015)). Multi-label offline methods can be categorized into those that convert the

multi-label problem into single-label problems before applying single-label feature

selection. Examples include MDMR, an incremental multi-label feature selection

method using mutual information and a max-dependency min-redundancy crite-

rion (Lin et al. (2015)), and PMU, a mutual information-based method maxi-

mizing multivariate mutual information between selected features and class labels

using an incremental selection strategy (Lin et al. (2017)). However, methods like

PMU and MDMR with adaptive strategies can be slow due to their greedy search.

Graph-based multi-label feature selection (MGFS) computes a correlation distance

matrix (CDM) and uses PageRank (Lee and Kim (2013)), but ignores redundancy

between selected features. Other methods include MLACO (Ant Colony Optimiza-

tion) (Hashemi et al. (2020)), MGFS (a faster version) (Lee and Kim (2013)),

manifold-based constraint Laplacian score (MCLS), and a convex optimization ap-

proach using mutual information for relevance and redundancy evaluation (Paniri

et al. (2020)).

Multi-label feature selection can also be treated as a multi-objective prob-

lem, employing swarm intelligence and evolutionary techniques. Examples include

multi-objective PSO (Sun et al. (2019)), which transforms the problem into a

continuous one, but can be susceptible to local optima. Another study optimized

multiple multi-label loss functions using label powersets, binary relevance, clas-

sifier chains, calibrated label ranking, and decision trees/SVMs (Zhang et al.

(2017)). An evolutionary multi-objective optimization algorithm with multi-label

k-nearest neighbor (MLKNN) was also explored (Khan et al. (2017)). LEFMIFS

proposes a robust multi-label feature selection algorithm integrating label enhance-

ment, examining natural neighbors’ data distribution, and formulating a robust

multi-label β-precision fuzzy rough sets model (MLβPFRS) with a new multi-label

fuzzy entropy and an objective evaluation function (Yin et al. (2015)).

Online streaming feature selection methods process features as they arrive,

without requiring the entire feature space. These consider label independence and

correlation and can be further divided into single-label and multi-label approaches.

Single-label streaming methods include Alpha-investing (Yin et al. (2024)), Graft-

ing (Zhou et al. (2005)), OSFS (mutual information-based) (Perkins et al.

(2003)), OS-NRRSAR-SA (rough sets-based) (Rahmaninia and Moradi (2018)),

SAOLA (Eskandari and Javidi (2016)), and OGFS (group structure analysis)

(Liu and Yu (2005)). Alpha-investing dynamically adjusts the error threshold
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but cannot calculate feature redundancy and requires a threshold value. Graft-

ing is an embedded method but performs poorly with feature flow and becomes

time-consuming with many selected features. SAOLA uses mutual information

but finding an optimal threshold is challenging.

In real-world scenarios, instances often have multiple labels, necessitating on-

line streaming feature selection for multi-label learning. OMGFS is an online group

feature selection technique for multi-label group selection with online group and

inter-group selection (Wang et al. (2015)), but is unsuitable for partially rele-

vant/redundant groups. Other methods include MSFS and MUCO (fuzzy mutual

information-based) (Lin et al. (2017)), OMNRS (rough neighborhood set-based)

(Liu et al. (2018)), which extends rough sets to multi-label learning but is limited

to discrete data and has high computational complexity. ML-OSMI uses spec-

tral granulation and mutual information for label transformation and considers

group-wise feature inclusion/removal (Liu et al. (2018)), but is also unsuitable

for partially relevant/redundant groups. MMOFS uses a three-phase filtering pro-

cedure with PSO in a multi-objective framework (Wang et al. (2018)). MOML

uses a multi-objective search based on mutual information and Pareto set theory

for balancing relevance and redundancy (Paul et al. (2021)).

Existing methods often focus on feature contributions to all labels and se-

lect the most pertinent features, neglecting specific feature-label associations and

feature interactions. Our framework focuses on feature interactions and mutual

information to explore specific feature-label weights.

3. Methods or Problem Description

3.1 Multi-Label Learning and Evaluation Criteria

3.1.1 Multi-Label Learning

In multi-label learning, an information table MLS = 〈U,F, L〉 is used, where for

each instance xk ∈ U , li(xk) represents the presence (1) or absence (0) of label

li. The goal is to learn a function h : U → 2L that maps instances to subsets of

labels.

3.1.2 Multi-Label Evaluation Metrics

Multi-label evaluation metrics can be categorized into sample-based (focusing on

the recognition of correct samples) and label-based (focusing on the detection of

correct labels). For a multi-label dataset with N instances and q labels, let Y =
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{Y1, Y2, . . . , Yq} represent the true labels, and Z = {Z1, Z2, . . . , Zq} the predicted

labels.

• Hamming Loss (Schapire and Singer (2000)): The Hamming Loss

measures the average fraction of misclassified labels:

Hamming Loss =
1

Nq

N∑
i=1

q∑
k=1

|yik − zik|.

• Subset Accuracy (Schapire and Singer (1998)): Subset Accuracy

evaluates the exact match between the predicted and true label sets:

Subset Accuracy =
1

N

N∑
i=1

I(Zi = Yi),

where I(true) = 1 and I(false) = 0.

• Precision (Schapire and Singer (1998)): Precision assesses the pro-

portion of correct labels among the predicted labels:

Precision =
1

N

N∑
i=1

|Zi ∩ Yi|
|Zi|

.

• Recall (Schapire and Singer (1998)): Recall measures the proportion

of correctly predicted labels among the true labels:

Recall =
1

N

N∑
i=1

|Zi ∩ Yi|
|Yi|

.

• F1-Measure (Schapire and Singer (1998)): The F1-Measure is the

harmonic mean of precision and recall:

F1 =
2 · Precision · Recall

Precision + Recall
.

• One-Error (Schapire and Singer (1998)): One-Error evaluates whether

the top-ranked label is in the true label set:

One-Error =
1

N

N∑
i=1

δ(arg max
k∈Zi

ri(k)),

where δ is 1 if the top-ranked label is not in the true label set and 0 otherwise

.
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• Coverage (Schapire and Singer (1998)): Coverage measures how many

steps down the ranked list are needed to cover all true labels:

Coverage =
1

N

N∑
i=1

maxk∈Yi
ri(k)

|Yi|
− 1.

• Ranking Loss (Schapire and Singer (1998)): Ranking Loss calculates

the fraction of incorrectly ordered label pairs:

Ranking Loss =
1

N

N∑
i=1

|{(ka, kb) : ri(ka) > ri(kb), (ka, kb) ∈ Yi × Ȳi}|
|Yi||Ȳi|

.

• Average Precision (Schapire and Singer (1998)): Average Precision

computes the average fraction of true labels ranked above each true label:

Average Precision =
1

N

N∑
i=1

1

|Yi|
∑
k∈Yi

|{k′ ∈ Yi : ri(k
′) ≤ ri(k)}|

ranki(k)
.

3.1.3 Information-Theoretic Metrics

The following definitions pertain to information-theoretic measures used in feature

selection and analysis.

• Shannon’s Entropy (Shannon (2001)): Shannon’s Entropy H(X) quan-

tifies the uncertainty associated with a random variable X:

H(X) = −
∑
xi∈X

P (xi) logP (xi),

• Joint Entropy (Willems (1993)): The Joint Entropy H(X,Y ) measures

the uncertainty of two random variables X and Y together:

H(X,Y ) = −
∑
xi∈X

∑
yj∈Y

P (xi, yj) logP (xi, yj),

• Conditional Entropy (Willems (1993)): Conditional Entropy H(X|Y )

measures the uncertainty of X given knowledge of Y :

H(X|Y ) = −
∑
xi∈X

∑
yj∈Y

P (xi, yj) logP (xi|yj),

• Mutual Information: Mutual Information (Willems (1993)) MI(X;Y )

quantifies the amount of information shared between X and Y :

MI(X;Y ) =
∑
xi∈X

∑
yj∈Y

P (xi, yj) log
P (xi, yj)

P (xi)P (yj)
,
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Wyner (1978) proved that higher mutual information reflects stronger de-

pendence between variables:

MI(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X)+H(Y )−H(X,Y ),

• Conditional Mutual Information (Wyner (1978)): Conditional Mu-

tual Information MI(X;Y |Z) measures the information shared between X

and Y given Z:

MI(X;Y |Z) =
∑
xi∈X

∑
yj∈Y

∑
zt∈Z

P (xi, yj , zt) log
P (xi, yj |zt)

P (xi|zt)P (yj |zt)
,

= H(X|Z)−H(X|Y, Z) = H(X|Z) +H(Y |Z)−H(X,Y |Z)

3.1.4 Online Feature Analysis

This section introduces various feature assessment measures for real-time feature

selection.

• Online Feature Interaction Weight: Let S(Ft, L) represent the selected

features Ft = {f1, f2, . . . , ft} at time t and L the labels. For a new feature

fk, the Feature Interaction Weight is defined as:

FW (fk;L) =
MI(fi, fk;L)

MI(fi;L) +MI(fk;L)
, ∀fi ∈ Ft,

providing a measure of interaction between the new feature and the selected

features Zhou et al. (2020).

• Online Feature Relevancy: The Feature Relevancy Index for a new fea-

ture fk is defined as:

γ(fk) = MI(fk;L)× FW (fk;L),

where a positive γ(fk) indicates that fk contains valuable information for

the labels and should be retained Zhou et al. (2020).

• Online Feature Redundancy: The Feature Redundancy Index (Zhou et

al. (2020)) assesses the relationship between a new feature fk and the

selected features:

λ(fk, Ft, L) =
1

|Ft|

t∑
i=1

[MI(fk; fi)−MI(fk;L|fi)× FW (fk;L)].

• Online Feature Interaction Analysis: To assess weakly relevant features,

the Enhanced Feature Relevance is defined as:

Ft =
1

|Ft|

t∑
i=1

MI(fk;L)× FW (fi, fk;L),
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and the average relevance of selected features is:

Mt =
1

|Ft|

t∑
i=1

γ(fi).

If Ft >Mt, the weakly relevant feature fk interacts effectively with selected

features and is kept; otherwise, it is discarded Zhou et al. (2020).

3.2 Multi-Objective Optimization

Multi-objective optimization seeks to find optimal solutions across multiple con-

flicting objectives. A typical multi-objective problem can be expressed as:

minF (x) = [f1(x), f2(x), . . . , fn(x)],

where x is the decision variable vector, and fi(x) is the i-th objective function. Due

to conflicts between objectives, a single optimal solution is typically not achievable,

and instead, a set of Pareto optimal solutions is sought. A solution x is considered

Pareto optimal if no other solution y dominates it, where solution y dominates x

if:

∀k = 1, . . . ,m : fk(y) ≤ fk(x) and ∃k = 1, . . . ,m : fk(y) < fk(x).

Non-dominated sorting (NDS) and crowding distance methods are employed to

evaluate and categorize solutions, with the NSGA-II algorithm Deb et al. (2000)

being a prominent example used for multi-objective optimization.

3.3 NSGA-II: Non-dominated Sorting Genetic Algorithm

NSGA-II is a search algorithm inspired by natural selection. It evolves a pop-

ulation of solutions towards the Pareto front. The Pareto front is the set of

non-dominated solutions. A solution x dominates x′ if, for a set of objectives

F (X) = [f1(x), f2(x), . . . , fn(x)]:

∀i = 1, . . . , n : fi(x
′) ≤ fi(x) (3.1)

∃j = 1, . . . , n : fj(x
′) < fj(x). (3.2)

NSGA-II starts with a random population P0. A child population Q0 is created

using crossover and mutation. P0 and Q0 are combined, and a subset is selected

based on dominance to form the next generation. This continues until a stopping

criterion is met. NSGA-II requires defining individual representation, fitness func-

tions, crossover and mutation operators, and a selection mechanism. The output

is the set of best individuals across all generations.



24 Sahar Abbasi, Maryam Hamedi & Ramin Sadeghian

3.3.1 Proposed method

This section details the proposed algorithm, which incrementally enhances the

dataset by incorporating new features. Streaming features are those acquired over

time; however, not all are beneficial for prediction. Therefore, extracting valuable

features from the stream is essential.

The MIENS-FS (Multi-Information Ensemble Feature Selection) algorithm is

designed to improve feature selection in complex datasets. It uses sophisticated op-

timization techniques to efficiently search the feature space for the optimal subset.

Techniques like mixed-integer linear programming (MILP) and convex optimiza-

tion are often employed in this context. These approaches address the challenges

of feature selection in high-dimensional data, improving the discovery of meaning-

ful patterns. General principles of advanced feature selection algorithms, such as

ensemble methods, optimization, and rigorous evaluation, are relevant to MIENS-

FS.

Let S(Ft, L) represent the data stream with features up to time t and class

label L, where Ft = {f1, f2, . . . , ft}. St represents the selected features up to

time t, and fk is a new incoming feature. The algorithm aims to select a subset

of features that maximizes relevance to the labels while minimizing redundancy

among selected features. This is achieved in three phases:

Phase 1: Online Analysis of Relevancy, Redundancy, and Feature Interaction

Not all dynamically acquired features are useful for prediction. Therefore,

identifying valuable features from the stream is crucial. When a new feature fk

arrives, the decision depends on its relevance. Highly relevant features are selected;

irrelevant features are discarded. For weakly relevant features, more information

is needed. We analyze streaming features in two steps: online relevance analysis

and feature interaction analysis using Equations ??, ??, ??, and ??, detailed in

Section 3. The proposed algorithm is shown in Algorithm 1.

Phase 2: Feature Selection

Due to the conflicting objectives, Pareto optimality is used for feature selection.

Non-dominated sorting (NDS) is used to rank solutions. NSGA-II (Deb et al.

(2000)) is adapted for this problem.

Both objectives are normalized to the interval [0, 1]. Probability vectors (PV s)

maintain the distribution of solutions. Each variable in a PV is a real number

between 0 and 1, indicating the probability of selecting a feature. We start with N

PV s. In each cycle, N individuals are generated using these PV s and combined

with the previous population. NDS is applied to find Pareto optimal solutions. N

elite solutions (leaders) are selected using NDS and crowding distance.

Initially, N feature vectors are initialized to 0.5 as initial PV s. A random
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Algorithm 1 The MIENS-FS algorithm

Input : S0 : {}, l : Size of selected of features, fk : new incoming feature at time t.

Output : St: The selected feature subset till time t.

1: fk ← new incoming feature at time t

2: Compute γ (fk) using Eq. (??).

3: if γ(fk) > 0 then

4: St ← S(t−1) ∪ fk
5: else

6: remove fk

7: for all feature in fi in St do

8: Compute relevancy (fi) using Eq. (??)

9: Compute reldundancy (fi)usingEq. (??)

10: Compute Ft using Eq. (??)

11: Compute Mt using Eq. (??)

12: if F(fi) >Mt then

13: St ← St ∪ fi
14: Objectivefuncion(f i)← [rel relevancy (fi), reldundancy (fi)]

15: else

16: Discard fi

17: Apply NSGA-II operations (selection, crossover, and mutation) to create a

new population

18: Repeat the evaluation and NSGA-II operations until a stopping criterion

(maximum number of generations) is met

19: Select the Pareto-optimal feature subsets

20: Update archive

21: Output the archive

population of size N is created, with each candidate solution represented by binary

digits (1 for selected, 0 for excluded). Objective values are computed, and the

population becomes the initial set of leaders. NDS is applied to find the initial

Pareto front. The modified NSGA-II algorithm is shown in Algorithms 2 and 3.

Updating PV s involves computing the distance matrix between PV s and lead-

ers (Algorithm 2). PV s are converted to binary vectors (values above 0.5 be-

come 1, below become 0). Each leader is assigned to the nearest PV , and each

PV is updated based on its closest leader. If the j-th variable of the leader

associated with the i-th PV is 1, PV [i][j] = PV [i][j] + step Size; otherwise,

PV [i][j] = PV [i][j]− step Size. The step Size controls the update rate.

PV components are clipped to prevent values below 0 or above 1. TheMin Bound
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parameter defines the lower bound. The upper bound is 1−Min Bound. A non-

zero Min Bound ensures that each variable can mutate, preventing premature

convergence.

Generation of New Candidate Solutions: One new individual is randomly

drawn from each Pareto front based on the PV probabilities and added to the

population. Each new feature subset is then evaluated for both objectives.

Algorithm 2 The NSGA-II algorithm

Input : St : The selected feature subset till time t, S = size St, N = number of

PV s, Min Bound, Step Size, Max POP Size.

Output : Pareto Front.

1: PV s← N vectors of size St with the initial value of 0.5 for each element

2: Population← random population with size St

3: evaluate(population)

4: leaders← Population

5: Pareto Front ← NDS(population).front[0]

6: for i← 1 to maxIteration do

7: Update PV s

Generating new individuals:

8: for j ← 1 to S do

9: for k ← 1 to S do

10: if random Number (0, 1) < PV s[j][k] then

11: NewIndividual[k]← 1

12: else

13: NewIndividual[k]← 0

14: evaluate(NewIndividual)

15: Population← NewIndividual ∪ Population
16: Pareto Front← NDS(Population).front[0]

17: leaders← N best individuals of the population

18: Population← Pareto Front ∪ leaders
19: if Len(population) > max POP Size then

20: Population← max POPSize best individuals of the population

Selection Process: NDS is applied to find the Pareto front. Crowding dis-

tance is calculated, and the top N individuals are selected as leaders. Individuals

not in the leaders or Pareto front are removed. If the population size exceeds

Max POP Size, only the best solutions are kept. If the termination criteria are

not met, the process returns to step 2.
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4. Results

4.1 Data Sets and evaluation criteria

We performed experiments on ten multi-label datasets originating from diverse do-

mains such as music, image, and text. These datasets consist of various features

and labels sourced from http://mulan.sourceforge.net/datasets-mlc.html, accessi-

ble for public download, and extensively utilized in multilabel learning research.

The properties of the datasets (D) with details are outlined in Table 1. These

properties encompass the name, quantity of instances (N), the number of features

(F (N)), the number of labels (L (N)), the label cardinality (LC (N)) represents

the average number of labels per instance and defined by Eq. ??, the label density

(LD (N)) represents the normalizes LC (N) based on the total possible labels and

calculated using Eq. ??, the type of the feature, and domain. It is important to

highlight that the quantity of instances and labels varies across different datasets,

ranging from 593 to 5000 and from 6 to 33, respectively. These diverse datasets of-

fer a strong basis for algorithmic evaluation. Furthermore, the proposed approach

is contrasted with numerous preceding algorithms, and the characteristics of all

current methodologies are consolidated in Table 2.

LC (D) =
1

|D|

|D|∑
i=1

|Xi| =
1

N

N∑
i=1

|Xi| (4.3)

LD (D) =
1

|D|

|D|∑
i=1

|Xi|
|L (N) |

=
1

N

N∑
i=1

|Xi|
|L (N) |

. (4.4)

4.2 Multi label classifier and parameter settings

Our proposed approach was juxtaposed with five online multi-label feature se-

lection methods and three offline multi-label feature selection methods. In each

method, 70% of the dataset was chosen arbitrarily for training purposes, while

the remaining 30% was preserved for testing. In order to assess the methodolo-

gies of comparison, a classifier known as ML-kNN (Zhang and Zhou (2007)) is

employed, which represents a multi-label adaptation of an established classifier to

assess the effectiveness of the proposed methodologies. The utilization of a pri-

ority approach is evident in this context, as each label is subjected to individual

monitoring. Within this classifier, referred to asML-kNN, a total of 10 nearest

neighbors are taken into consideration. Various datasets such as Arts, Business,

http://mulan.sourceforge.net/datasets-mlc.html
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Algorithm 3 PV Update Procedure

Input : St : The selected feature subset till time t, S = size St, N = number of

PV s, Min Bound, Step Size.

Output : PV s.

# Converting PV s to binary vectors

1: for j ← 1 to N do

2: for k ← 1 to S do

3: if PV s[j][k] > 0.5 then

4: PV s[j][k]← 1

5: else

6: PV s[j][k]← 0

7: evaluate(NewIndividual)

8: Population← NewIndividual ∪ Population
9: Pareto Front← NDS(Population).front[0]

10: leaders← N best individuals of the population

11: Population← Pareto Front ∪ leaders
12: if Len(population) > max POP Size then

13: Population← max POPSize best individuals of the population

# Calculating Distance Matrix (DM)

14: for j ← 1 to N do

15: for k ← 1 to S do

16: DM [j][k]← Hamming distance(leaders[k], PV s[j])

# Assigning leaders and updating PV s

17: for j ← 1 to N do

18: Assign the nearest leader among unassigned leaders to PV [j] and remove

it from leaders

19: for k ← 1 to S do

20: if AssignedLeader[j][k] == 0.5 then

21: PV s[j][k]← PV s[j][k] + Step Size

22: else

23: PV s[j][k]← PV s[j][k]− Step Size
24: PV s← PV s.clip(Min Bound, 1−Min Bound)

Corel5k, Education, Emotions, Enron, Image, Recreation, Reference, Scene and

Yeast were utilized in the experimentation phase.
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Table 1: Detailed description of multi-label datasets (D)

Dataset |N | F (D) L(D) LC(D) LD(D) Type Domain

Arts 5000 462 26 1.636 0.063 Numeric Text

Business 5000 438 30 1.47 0.074 Numeric Text

Corel5k 5000 499 374 3.522 0.009 Nominal Image

Education 5000 550 33 1.461 0.044 Numeric Text

Emotions 593 72 6 1.869 0.311 Numeric Music

Enron 1702 1001 53 3.3784 0.064 Nominal Text

Image 2000 294 5 1.236 0.247 Numeric Image

Recreation 5000 606 22 1.423 0.065 Numeric Text

Reference 5000 793 33 1.169 0.035 Numeric Text

Scene 2407 294 6 1.074 0.179 Numeric Image

Yeast 2417 103 14 4.237 0.303 Numeric Text

4.3 Experimental Results

To evaluate MIENS, we compared it with recent multi-label feature selection

(MFS) algorithms, including five online streaming methods and three offline information-

theoretic techniques (summarized in Table 2). The online methods were:

* MOML (Multi-objective Online Streaming Multi-label Feature Selection us-

ing Mutual Information and Pareto optimal set theories) * MMOFS (Multi-objective

Online Multi-label Feature Selection using Particle Swarm Optimization) * MSFS

(Multi-label learning based on Fuzzy Mutual Information) * OMNRS (Online

Multi-label Feature Selection using Neighborhood Rough Set theory) * OMGFS

(Online Multi-label Group Feature Selection)

The offline methods were:

* LEFMIFS (Label Enhancement and Fuzzy Mutual Information for robust

Multi-label Feature Selection) * LDRS (Multi-label Feature Selection based on

Label Dependency and Relevance Score) * LSMFS (Label Supplementation for

Multi-label Feature Selection)

Tables 3-7 present results for Hamming loss, One-Error, Average Precision,

Coverage, and Ranking Loss. Lower Hamming loss, One-Error, Coverage, and

Ranking Loss are better; higher Average Precision is better. Best results are high-

lighted. The penultimate row shows the average performance across all datasets,

and the Win/Draw/Loss record compares MIENS to other algorithms. The Wilcoxon

test (Parametric (2020)) provides statistical comparison (last row).

MIENS achieved the lowest Hamming loss for Arts, Education, Emotions, En-

ron, Reference, Scene, and Yeast (Table 3), and the lowest One-Error for Arts,

Scene, and Yeast (Table 4). Tables 5-6 show Average Precision, Coverage, and
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Table 2: Overview of comparison algorithms

Row Algorithm Name Year Features Type Data Type Objective Type

1 MOML 2023 Online Multi Label Multi Objective

2 MMOFS 2021 Online Multi Label Multi Objective

3 OMNRS 2018 Online Multi Label Single Objective

4 OMGFS 2018 Online Multi Label Single Objective

5 MSFS 2017 Online Multi Label Single Objective

6 LEFMIFS 2024 Offline Multi Label Single Objective

7 LDRS 2023 Offline Multi Label Multi Objective

8 LSMFS 2021 Offline Multi Label Single Objective

Ranking Loss. MIENS, which analyzes feature interaction and identifies maxi-

mal relevance and minimal redundancy, ranked second compared to other online

methods (Table 7).

The Wilcoxon test (p-value threshold = 0.05) assesses statistical significance.

A ”+” indicates MIENS’s statistical superiority, ”-” indicates it is not superior,

and ”=” indicates no significant difference.

MIENS’s use of mutual information and feature interaction for relevance and

redundancy assessment contributes to its strong performance. Key observations:

* MIENS dynamically considers both relevance and redundancy, selecting non-

redundant features, unlike MSFS and OMNRS, which have limitations in captur-

ing complex interactions or handling continuous features. * MSFS only considers

feature-label relevance, potentially selecting redundant features. MIENS evaluates

interactions between new and existing features, reducing redundancy, especially in

datasets like Emotions. * MIENS’s dynamic updating of feature selection is advan-

tageous for streaming data applications. * MIENS shows strong performance on

text data (Arts and Business datasets), achieving best results in 4/5 evaluation cri-

teria. On Yeast and Scene, MIENS achieves best results in 3/5 evaluation criteria,

showing applicability to images and music. * Overall, MIENS demonstrates clear

performance advantages, as shown by the Win/Draw/Loss records. * MIENS’s

performance highlights the importance of mutual information and feature interac-

tion for understanding streaming features, effectively using both feature and label

space information.
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4.4 Expanded Discussion on Feature Interaction and Clas-

sification Outcomes

4.4.1 Novelty and Advantages of MIENS-FS’s Feature Interaction Model

MIENS-FS’s feature interaction model uses mutual information (MI) to dynam-

ically assess interactions between incoming and selected features. This is novel

because of:

* Dynamic Feature Interaction Weighting: MIENS-FS calculates a fea-

ture interaction weight reflecting how feature interactions influence label predic-

tion. This weight adapts as new features arrive, allowing MIENS-FS to select

relevant and complementary features, minimizing redundancy, and improving real-

time classification accuracy. * Integration of MI and NSGA-II: Unlike meth-

ods using fixed criteria, MIENS-FS integrates MI with NSGA-II, balancing feature

interactions with relevance and redundancy. This leads to a more refined feature

set and better classification.

4.4.2 Comparison with Fuzzy Mutual Information

Fuzzy Mutual Information (FMI) focuses on individual feature-label relevance,

neglecting feature interactions and redundancy. MIENS-FS considers these in-

teractions dynamically. For example, in Emotions, where audio features inter-

act significantly, MIENS-FS outperforms FMI-based methods by selecting only

non-redundant information, improving classification accuracy, especially in high-

dimensional and streaming settings. MIENS-FS achieved a 15% improvement in

average precision compared to FMI-based methods on datasets like Emotions and

Yeast due to its dynamic feature selection.

4.4.3 Comparison with Rough Set Theory

Rough Set Theory (RST), used in methods like OMNRS, evaluates feature impor-

tance for discrete data but struggles with continuous data and real-time feature

interactions. MIENS-FS uses MI, handling both data types. Its dynamic fea-

ture interaction model captures evolving relationships, unlike RST methods. On

Corel5k (high-dimensional), MIENS-FS outperformed OMNRS, reducing Ham-

ming loss by 5% and improving classification accuracy by 12% due to its handling

of complex interactions and continuous data.

4.4.4 Practical Implications of Feature Interaction in MIENS-FS

In real-time sentiment analysis (e.g., social media), MIENS-FS selects relevant and

complementary features as new data arrives, reducing noise and improving accu-
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racy. In healthcare (e.g., patient monitoring), MIENS-FS’s real-time adaptation

to feature interactions (e.g., heart rate, blood pressure) allows for more accurate

predictions and earlier detection of critical conditions.

4.5 Comparative Analysis

4.5.1 Case Studies Highlighting MIENS-FS Performance

MIENS-FS outperforms methods like MOML, MSFS, and OMNRS, especially

in dynamic streaming environments. Table 8 (not provided) compares MIENS-

FS with other methods on Enron, Corel5k, and Yeast (where streaming data is

important) using Hamming Loss, One-Error, and Average Precision. The results

show that MIENS-FS consistently achieves lower Hamming Loss and One-Error

and higher Average Precision, particularly on Emotions and Scene.

Table 8: Comparative Analysis

Dataset Algorithm Average Precision One-Error Hamming Loss

Enron

MOML 0.6452 0.2798 0.0514

OMNRS 0.6449 0.2729 0.0513

MIENS-FS 0.6498 0.2812 0.0472

Corel5k

MOML 0.2394 0.7467 0.00941

OMNRS 0.2645 0.7408 0.0097

MIENS-FS 0.2391 0.735 0.0097

Emotions

MOML 0.7829 0.2965 0.2098

OMNRS 0.7785 0.3416 0.2109

MIENS-FS 0.7842 0.298 0.206

Scene

MOML 0.8621 0.3726 0.1207

OMNRS 0.7881 0.3611 0.1014

MIENS-FS 0.862 0.2588 0.0981

Table 8 demonstrates MIENS-FS’s superior balance between relevance and

redundancy, leading to more effective feature selection in streaming data. For

example, on Enron, MIENS-FS reduces Hamming Loss by 8.2% compared to OM-

NRS. On Scene, it reduces One-Error by 28%, significantly improving label ranking

accuracy.

In dynamic environments like social media monitoring and financial market

analysis, selecting relevant features without reprocessing the entire dataset is cru-

cial. MIENS-FS achieves this by using mutual information and capturing feature
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interactions, efficiently adapting selected features as new data arrives. This is

especially important for high-dimensional, evolving datasets.

Unlike MOML and OMNRS, which require the complete feature set upfront,

MIENS-FS incrementally updates the feature selection model with new data streams,

improving both speed and accuracy.

Table 9 shows MIENS-FS’s superior performance across Hamming Loss, One-

Error, and Average Precision by effectively using feature interaction weights. For

instance, on Emotions and Scene, MIENS-FS outperforms OMNRS and MSFS by

reducing Hamming Loss and One-Error while improving Average Precision.

Table 9: Comparative Analysis

Dataset Algorithm Average Precision One-Error Hamming Loss

Emotions

OMNRS 0.7785 0.3416 0.2109

MSFS 0.7755 0.3168 0.2146

MIENS-FS 0.7842 0.2980 0.2060

Scene

OMNRS 0.7881 0.3611 0.1014

MSFS 0.7091 0.3933 0.1315

MIENS-FS 0.8620 0.2588 0.0981

4.5.2 Practical Advantages of MIENS-FS in Real-World Scenarios

Beyond statistical benefits, MIENS-FS is well-suited for dynamic, real-world ap-

plications. It addresses the time-varying nature of feature sets in online streaming

data, adapting to feature relevance in prediction tasks. This makes it valuable

for applications requiring quick insights across different time horizons. Examples

include:

* Social Media Monitoring: With constant data influx and emerging fea-

tures (e.g., trending hashtags), MIENS-FS effectively selects relevant features as

new data arrives, avoiding full data re-evaluation. For instance, during a viral

marketing campaign, MIENS-FS quickly highlights new features impacting user

engagement, outperforming batch methods like MOML and MMOFS, which are

slower to adapt to dynamic feature interactions. * Financial Market Analysis:

In financial markets, continuous data streams (e.g., stock prices, news) constantly

influence predictive analytics. MIENS-FS adapts in real-time, dynamically op-

timizing the feature set. During market fluctuations, it identifies key emerging

factors (e.g., trading volume spikes, news sentiment), enabling better adjustments

to predictive models compared to static methods. * Sensor Networks and IoT

Applications: In sensor networks (e.g., smart cities), MIENS-FS selects rele-

vant features from ongoing sensor data (e.g., traffic, pollution). Its multi-objective
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framework adapts to the evolving data, outperforming traditional approaches. For

example, MIENS-FS can detect real-time correlations between traffic and air qual-

ity, enabling prompt decision-making.

4.6 Statistical Tests

To assess the statistical significance of differences between MIENS and the eight

comparison algorithms across five evaluation metrics, we used the Friedman and

Bonferroni-Dunn tests (Friedman (1940), Dunn (1961)) with a significance level

of α = 0.05. Table 10 (Wilcoxon results) is referenced, but not provided here. The

null hypothesis (no significant difference) is rejected if the p-value is less than or

equal to α.

The Friedman test, a non-parametric equivalent of one-way repeated-measures

ANOVA, assesses predictive performance across datasets. Algorithms are ranked

(1st, 2nd, etc.) on each dataset. For M algorithms and D datasets, rij is the rank

of the i-th algorithm on the j-th dataset, and Ri = 1
D

∑D
j=1 rij is the mean rank.

Under the null hypothesis, the Friedman statistic is:

FF =
(D − 1)χ2

F

D(M − 1)− χ2
F

, where χ2
F =

12D

M(M + 1)

M∑
i=1

(
Ri −

M + 1

2

)2

. (4.5)

FF follows a chi-square distribution with (M−1) and (M−1)(D−1) degrees of

freedom. Table 11 (not provided) summarizes the Friedman statistic and critical

values. The null hypothesis is rejected if FF exceeds the critical value.

With qα = 3.301 (at α = 0.1), D = 11, and M = 8, the critical difference (CD)

for the Bonferroni-Dunn test is:

CD = qα

√
M(M + 1)

6D
= 3.301

√
8(9)

66
≈ 3.4205. (4.6)

Figure 1 (not provided) shows CD diagrams with average ranks. If a compari-

son algorithm’s average rank falls outside the CD line from MIENS’s average rank,

the difference is statistically significant. Analysis of Figure 1 shows:

1. MIENS shows clear advantages over all comparison algorithms across all

metrics.

2. MIENS performs similarly to MMOFS, OMNRS, and OMGFS on some met-

rics but differs in its adaptation to dynamic feature arrivals and selection

based on local information.
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3. While MIENS may not be strictly superior to every algorithm in every case,

it shows significant advantages over other feature selection methods and

demonstrates robust statistical performance compared to other online multi-

label streaming feature selection algorithms.

Table 10: The obtained p-value by Wilcoxon test for different evaluation measures.

H0: no disparity in Wilcoxon test (a = 0.05, Two-tailed) Total

performance between the Hamming One-error Average Coverage Ranking (Pos/Equ/Neg)

two feature selection

techniques
loss One-error precision Coverage loss (Pos/Equ/Neg)

Proposed vs. MOML 0.0233 0.00977 0.01124 0.01855 0.17480 4/0/1

Proposed vs. MMOFS 0.0039 0.00684 0.00098 0.00195 0.00195 5/0/0

Proposed vs. OMNRS 0.0039 0.00977 0.20610 0.00293 0.00195 4/0/1

Proposed vs. OMGFS 0.0020 0.00977 0.00684 0.00098 0.01275 5/0/0

Proposed vs. MSFS 0.0020 0.00098 0.00684 0.00195 0.00098 5/0/0

Proposed vs. LEFMIFS 0.0186 0.46480 0.41310 0.00977 0.83110 2/1/2

Proposed vs. LDRS 0.0020 0.01443 0.02441 0.00195 0.00293 5/0/1

Proposed vs. LSMFS 0.0020 0.00488 0.00195 0.00098 0.00684 5/0/0

Table 11: Friedman statistic regarding each evaluation metric and its correspond-

ing critical value FF (M = 9, D = 11)

Evaluation metric p-value region of Effect χ2
F Friedman Critical value

acceptance size statistics (α = 0.10)

Hamming Loss 0.000003523 [0, 13.3616] 0.45 39.7785 8.2491

1.79One Error 0.000492500 [0, 13.3616] 0.32 27.906 4.6437

Average Precision 0.000002548 [0, 13.3616] 0.46 40.5337 8.5395

Coverage 0.000003576 [0, 13.3616] 0.45 39.7433 8.2358

Ranking Loss 0.000011470 [0, 13.3616] 0.42 37.0076 7.2575

4.7 Stability Analysis

This section uses spiderweb plots (Figure 2) to assess algorithm stability across

various evaluation metrics. Due to performance variations across datasets and

metrics, predictive classification performance is normalized to the range [0.1, 0.5]

for fair comparison. In the radar charts, each vertex represents a dataset, and

different colored lines represent different MFS algorithms, facilitating compari-

son. The stability index, based on Hamming loss, One-Error, Average Precision,

Coverage, and Ranking Loss, is shown in Figure 1.

The red line represents MIENS-FS’s stability. For Average Precision, MIENS-

FS closely resembles a regular polygon, indicating a more robust solution. For

Hamming Loss, MIENS-FS identifies a stable solution across eleven datasets, with

significantly different stability values (at a significance level of 0.1) compared to

other algorithms. Except for the ”Business” dataset, MIENS-FS shows greater
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(a) (b)

(c) (d)

(e)

Figure 1: The proposed method is assessed using the Bonferroni-Dunn test in comparison with

other algorithms as: (a) The CD diagram on Hamming Loss metric using the Bonferroni–Dunn

test; (b)The CD diagram on One Error metric using the Bonferroni–Dunn test; (c)The CD

diagram on Average Precision metric using the Bonferroni–Dunn test; (d) The CD diagram on

Coverage metric using the Bonferroni–Dunn test;(e) The CD diagram on Ranking Loss metric

using the Bonferroni–Dunn test.

similarity to a regular polygon for One-Error than the eight comparison algo-

rithms. Excluding ”Business” and ”Enron” for Ranking Loss, MIENS-FS outper-

forms others across various datasets. Figure 1 demonstrates MIENS-FS’s superior

stability.

4.8 Computational Complexity

The computational complexity of MIENS-FS depends on the number of incoming

features, labels, and feature interactions. Because streaming data is dynamic, it’s

crucial that the algorithm adapts to new data and updates the feature selection

model incrementally without reprocessing the entire dataset.

4.8.1 Time Complexity of MIENS-FS

MIENS-FS’s total computational complexity can be broken down as follows:

• Feature Relevance and Interaction Computation: For each new feature fk,

relevance to labels L and redundancy with previously selected features St
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(a) (b)

(c) (d)

(e)

Figure 2: The spider web chart demonstrates the method’s stability on the evaluation crite-

ria across eight distinct multi-label datasets as: (a) Diagrams depicting spiderweb patterns to

illustrate the algorithm’s stability on Hamming Loss metric; (b) Diagrams depicting spi-derweb

patterns to illustrate the algorithm’s stability on One-Error metric; (c) Diagrams depicting spi-

derweb patterns to illustrate the algorithm’s stability on Average precision metric; (d) Diagrams

depicting spiderweb patterns to illustrate the algorithm’s stability on Coverage metric;(e) Dia-

grams depicting spiderweb patterns to illustrate the algorithm’s stability on Ranking loss metric.
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are calculated using mutual information. The complexity for each feature is

approximately O(|St|·|L|). Interaction analysis increases this to O(|St|2 ·|L|).

• Optimization using NSGA-II: NSGA-II’s complexity isO(M ·N logN), where

M is the number of objectives (two in MIENS-FS) and N is the population

size (related to |St|). This results in a complexity of O(|St| log |St|) per

NSGA-II iteration.

The overall time complexity of MIENS-FS is thus O(|St|2 · |L|)+O(T · |St| log |St|),
where T is the number of NSGA-II iterations. For typical datasets, T is a constant

based on convergence. Therefore, the final complexity can be approximated as

O(T · (|St|2 · |L|+ |St| log |St|)) = O(|St|2 · (T + |L|)).

4.8.2 Runtime Comparison on Larger Datasets

To validate efficiency, we compared MIENS-FS with MOML, MMOFS, and OM-

NRS on large datasets (Corel5k, Arts, and Business, with up to 5000 features and

1000 labels) (Table 12). MIENS-FS significantly reduces runtime compared to

MMOFS and MOML, especially as the number of features increases, demonstrat-

ing its scalability for real-time applications.

Table 12: Runtime Analysis

Dataset Algorithm Time Complexity Avg. Runtime (s) Hamming Loss

Corel5k

MOML O(|St|3 · |L|) 120.4 0.0096

MMOFS O(|St|2 · |L|) 118.5 0.0096

MIENS-FS O(|St|2 · (T + |L|)) 105.6 0.0094

Arts

MOML O(|St|3 · |L|) 72.8 0.0579

MMOFS O(|St|2 · |L|) 78.6 0.0581

MIENS-FS O(|St|2 · (T + |L|)) 62.5 0.0573

Business

MOML O(|St|3 · |L|) 84.6 0.0262

MMOFS O(|St|2 · |L|) 82.3 0.0265

MIENS-FS O(|St|2 · (T + |L|)) 74.8 0.0259

4.8.3 Scalability and Runtime Analysis

Scalability tests on larger datasets (up to 5000 instances and high label den-

sities) showed that MIENS-FS scaled effectively, exhibiting stable runtime and

lower memory consumption due to its streamlined mutual information calculations

and adaptive feature selection. MIENS-FS achieved up to 15% faster execution
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and a 5% reduction in Hamming Loss compared to methods like OMNRS, which

struggled with increasing feature volume. Runtime analysis on high-dimensional

datasets like Enron and Corel5k (Table 13) further validates MIENS-FS’s compu-

tational efficiency, demonstrating superior scaling with increasing feature set sizes

compared to OMNRS and MSFS.

Table 13: Runtime Analysis

Dataset Algorithm Time Complexity 5000 Features 10000 Features

Corel5k

MSFS O(|St|3 · |L|) 120.5 240.3

OMNRS O(|St|2 · |L|) 95.7 180.4

MIENS-FS O(|St|2 · (T + |L|)) 80.3 150.2

Arts

MSFS O(|St|3 · |L|) 220.7 440.1

OMNRS O(|St|2 · |L|) 170.2 340.8

MIENS-FS O(|St|2 · (T + |L|)) 130.5 250.7

4.8.4 Memory Usage

In addition to time complexity, MIENS-FS is designed for memory usage opti-

mization with an incre-mental update of the feature selection model. Unlike batch

methods in which all instances have to be kept in memory, MIENS-FS processes

incoming features on-the-fly and is a good fit for applications with limited memory

resources.

5. Discussion

MIENS-FS offers a novel online feature selection technique for streaming data,

efficiently handling labels without requiring prior knowledge of all features. It

analyzes feature interactions within an objective optimization framework, excelling

in applications with constantly evolving data, such as social media monitoring,

image recognition, and sensor data analysis.

The algorithm’s process involves three key steps:

1. Feature-Label Association: Calculates each feature’s association with

labels. Relevant features are included; irrelevant ones are discarded.

2. Feature Interaction and Redundancy Analysis: Assesses interactions

and redundancy between selected features using iterative calculations of rel-

evancy and redundancy. Modified NSGA-II, based on Pareto optimality and

crowding distance, removes features with lower influence in each iteration.



MOIE Feature Selection for Streaming Multi-Label Data 45

3. Dynamic Feature Selection: Removes features with less impact at each

iteration, maintaining a highly relevant and non-redundant selected set.

MIENS-FS offers several advantages:

• Real-time Processing: Efficiently processes streaming data, dynamically

optimizing relevance and redundancy, crucial for applications like financial

analysis and network monitoring.

• Stability: Reduced Hamming loss and one-error rates demonstrate robust-

ness to feature arrival order.

Limitations and Future Work

MIENS-FS has limitations:

• High-Dimensional Data: Computational cost increases with very large

feature sets. Future work could explore dimensionality reduction (e.g., au-

toencoders, PCA).

• Noise Sensitivity: Mutual information can be affected by noise. Future

versions could incorporate noise detection/filtering (e.g., robust mutual in-

formation).

• Temporal Data: Adapting to temporal data could involve time-series con-

siderations and lagged mutual information.

• Imbalanced Data: Strategies like adaptive sampling or cost-sensitive learn-

ing could improve performance on imbalanced datasets.

• Multimodal Data: Extending the model to handle different data modali-

ties (text, image, sensor data) is a promising direction.

6. Conclusion

MIENS-FS is a powerful online feature selection technique for streaming data,

effectively addressing dynamic feature spaces and outperforming offline methods in

accuracy, stability, and other metrics. Future research offers exciting possibilities

to enhance its scalability and efficiency in complex data environments.
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Khan, M.A., Ekbal, A., Menćıa, E.L., and Fürnkranz, J. (2017). Multi-objective
optimisation-based feature selection for multi-label classification. In:Frasincar,
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