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is to assess treatment efficacy by modeling response outcomes as trinomial dis-
tributions. We employ Gibbs sampling and the Metropolis-Hastings algorithm
for posterior computation. These methods generate estimates of treatment effects
while incorporating auxiliary variables that may influence outcomes. Simulations
across various scenarios demonstrate the model’s effectiveness. We also establish
credible intervals to evaluate hypotheses related to treatment effects. Furthermore,
we apply the methodology to real-world data on economic activity in Iran from
2009 to 2021. This application highlights the practical utility of our approach in
meta-analytic contexts. Our research contributes to the growing body of literature
on Bayesian methods in meta-analysis. It provides valuable insights for improving
clinical study evaluations.
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1. Introduction

In the context of meta-analysis, we often encounter situations where m centers are
considered for conducting a similar clinical study to compare a treatment with a
control group. Early work in meta-analysis includes combining effect size estimates
or merging p-values (Tippett , 1931; Pearson , 1933).

Burr and Doss (2005) describe a Bayesian semiparametric analysis for clinical
(1) (2

studies, focusing on cases where p,”’ and p;,” represent the success probabilities

of two distinct treatment and control groups in center i. These probabilities are
)

compared to evaluate improvement. For j = 1,2, let y;”’ represent the binomial

outcome in center ¢. Thus, for i =1,2,...,m, we have:
yz(j) ~ Binomial(ngj),pgj)), j=12 (1.1)

Burr and Doss (2005) extend the traditional binomial model to handle trinomial
outcomes. This framework is particularly useful in real-world applications where
outcomes are more nuanced. For example, in evaluating a proposed drug, three
outcomes can be considered: the drug improves the patient’s symptoms, worsens
them, or has no effect. To account for these outcomes and their interdependence,
the normal prior in their work is extended to a bivariate normal distribution.
This extension enables the model to incorporate correlations between outcomes,
providing a more comprehensive analysis.

A parametric Bayesian approach in meta-analysis has been developed by var-
ious authors, including Carlin (1992), Higgins (1997), and Maier et al. (2022).
However, in recent years, considerable attention has been directed toward non-
parametric and semiparametric Bayesian approaches. Chung and Dunson (2007)
attribute this trend to the efficiency and simplicity of posterior computation in
Dirichlet process mixtures. Related approaches have examined semiparametric
models in meta-analysis, including Burr and Doss (2005), Ohlsen et al. (2007),
and Fromke et al. (2022). Dominici and Parmigiani (2001) and Carota and
Parmigiani (2002) also focused on semiparametric Bayesian approaches for count
data in a distinct framework.

However, substantial heterogeneity is often observed among studies, and it is
the task of statisticians to assess potential sources of this heterogeneity (Thompson
, 1994). In the context of meta-analysis, auxiliary study-level variables can be
employed to explain differences between studies. The term meta-regression, used
to describe such an analysis, dates back to works by Bashore et al. (1989), Jones

(1992), and Greenland (1994).

Thompson (1994) argues that heterogeneity can be regarded as a valuable

tool, as it enables the application of beneficial approaches that aim to examine the

impact of potential sources of heterogeneity on the overall treatment effect. For
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instance, the treatment effect might be lower in studies involving a higher number
of older men compared to those with more young women. The dependence of
treatment effects on one or more characteristics, such as age and gender, can be
examined using meta-regression.

In meta-regression, subject characteristics are considered as auxiliary variables
in a regression analysis to estimate treatment effects. As stated by Armitage
and Colton (1998), to reduce post-study risk due to examining existing data,
such auxiliary variables should be pre-specified before starting the study. The
statistical goal of meta-regression is to explain the variance component among
subjects using auxiliary variables.

Two main ideas are considered in this paper. First, we focus on the method
used to create a class I" close to the specified prior 7y with a domain close to .
The second idea is the computational technique used to calculate the posterior
distribution. Specifically, we aim to extend the results of Burr and Doss (2005)
to a bivariate meta-regression.

In Section 2, we introduce the proposed model based on the conditional Dirich-
let process. Posterior distributions are calculated in Section 3. Since these poste-
rior distributions lack closed-form expressions, they are approximated using simu-
lation techniques. To estimate parameters in a Bayesian manner, we employ Gibbs
sampling and the Metropolis-Hastings algorithm, discussed in Section 4. In Sec-
tion 5, the effectiveness of the proposed method is evaluated using three simulated

datasets, and a practical example is provided in Section 6.

2. Model Description

In clinical studies, situations often arise where, in addition to the positive and
negative effects of a drug or treatment, a third neutral effect state is also relevant.
In such cases, the response variable for the treatment effect follows a trinomial
distribution. Here, we aim to generalize studies conducted on the binomial distri-
bution to a trinomial case using a semiparametric Bayesian approach within the
meta-regression framework.

Assume a similar study is conducted in m centers, where in each center, a
comparison between the treatment and control groups is made, yielding outcomes
labeled as positive, neutral, and negative effects. Therefore, the response vari-
able for both the treatment and control groups follows a trinomial distribution.
Consequently, for patient group j in center ¢, we have:

P = (D 02 63)

A A A

)~ Trinomial(ngj)7 pEj)), i=1,...
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where the frequency of the Ith outcome, rfﬂ),l = 1,2, 3, satisfies the conditions:
0< rgﬂ) < ngj) and Zrl(ﬂ) = ngj).
1=1

Furthermore, the corresponding probability vector pz(-j ) satisfies:
0< pz(-jl) <1 and Zpgﬂ) =1.
1=1
In such studies, the primary goal is to compare the treatment and control

groups by testing the following hypothesis:

Hy:pV =p? i=1,...,m. (2.3)

7

These comparisons are often confounded by unavoidable effects due to differences
between the testing centers. Thus, to test Hy, these confounding factors must
be accounted for. This issue is central to many meta-analysis studies. In this
)

paper, we address it by regressing p,”’ on some auxiliary variables that specify

the conditions under which the experiment was conducted. After obtaining the
regression model, we can make inferences about pgj ) while accounting for the effects
of confounding factors. In this approach, we use the log-odds of the treatment and

control outcomes, denoted by D; = (Dgl), D@)), where

?

1k
D™ = log % — 2P p*) k=1,2. (2.4)
i
Note that here z;(k) represents a vector of auxiliary variables. It is evident that
equations 2.3 and 2.4 pursue similar objectives. To perform Bayesian analysis,
we require the prior distribution for §;. We assume these prior distributions are
bivariate normal with means dependent on auxiliary variables representing exper-

imental conditions, as follows:

B = (B, 87y~ Ny(m, 3),

where
1) (@ o2 (2)
n; = "n;), 2 = 2(21) 12(2) :
0, 0,
Thus,
D; = (D, DY = (VB 2P g7) i Ny (my, 57), (2.5)
where

(1)* (1)
« [T () (1) 12 (2) - 1 2 x;
ri= (o) =it i a0 ) ()
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(12)

g

Note that ngk) are the regression coeflicients, and p; = \/ﬁ is the correla-
9 0y

tion coefficient between DEI) and DEQ), which arises from the common experimental
environment for treatment and control groups. By considering the prior distribu-
tion for the vector n, and transforming from m,; to p, we can obtain the prior
distribution for p. It should be noted that although we use the specified model
corresponding to equations 2.4 and 2.5, these settings can be generalized to more
complex scenarios, leading to a bivariate meta-regression problem.

As Griffin and Steel (2007) mentioned, the Dirichlet process (Ferguson , 1973)
has been extensively used as a prior distribution for an unknown model distribu-
tion, especially when dealing with multinomial distributions. In the following, we
will specify the required prior distributions using the Dirichlet process, and con-
sequently estimate posterior distributions and their parameters under a Bayesian

semiparametric meta-regression model.

Definition 2.1. Let © be a set and A be the sigma-field of subsets of ©. Also, let
a be a finite, non-empty, non-negative, and finitely additive measure on (©,A).
We say that a random probability measure P on (©, A) is a Dirichlet process with
parameter o on (©, A), and we write P ~ D(«), if for every k =1,2,..., and for
every measurable partition By, ..., B of ©, the joint distribution of the random
probabilities (P(By), ..., P(By)) is Dirichlet with parameters (a(Bi),...,a(Byg)).

Definition 2.2. Let Hy for § € © C R* be a parametric family of distributions on
the real line, and let X be a distribution on ©. Also, let Mg > 0 be known weights,
and set ag = MoHy. If 0 is sampled from X and F' is sampled from D,,, i.e., a
Dirichlet process with parameter oy, then we say that the prior distribution for F

is a mizture of Dirichlet processes (Antoniak , 1974).

In other words, a mixture of Dirichlet processes is a Dirichlet process whose
measure parameter is itself a random variable. For simplicity, we assume that
M does not depend on 6. Doss (1985) defined conditional Dirichlet processes as
follows.

Definition 2.3. Let a be a finite measure on the real line, and p € (—oo,00) be
a fized value. Instead of an arbitrary set A, let o and o/_f_ be the restrictions of

a to (—oo, ) and (u,00), respectively, defined as:

0% (4) = a4 (~00,11)) + 3a(AN {4}),

1
0% (4) = 0(A N (1,00)) + 5a(AN (1))
F_~ Dy~ and Fy ~ Do‘i are sampled independently, and F(t) is defined as:

F(t) = SF-(t) + 5. (0), (2.6)
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where the distribution of F' is denoted by D!. Note that the median of F' is equal
to p with probability one. Therefore, if F ~ D,, then D} is the conditional

distribution of F' given that its median is equal to .

Similar to Burr and Doss (2005) and using equation 2.5, for ¢ = 1,2,...,m
and j = 1,2, we propose the following model:

ni(j) | FU) ~ind (). (2.7)

FO | p0) 70) Lind DMMXN(H(J) 20 (2.8)

u) | 7)) ind N(C(J)7d(3)7-2(J)); (2.9)
) 1 ) . .

) = — _ ind F(a(J)vb(J)). (2.10)

TQ(J)

Remark 2.4. Note that, similar to Burr and Doss (2005), the use of an index

for a distribution implies conditioning.

The main question now is whether the means of FU) differ significantly from

zero. To answer this question, we will use posterior credible intervals.

3. Posterior Computation

Following a similar process to Burr and Doss (2005), the prior distribution of n(J )

can be expressed as:

@, s ,
M x N* (M(J)’TQ(J)) + > 5 &
. 1 k';éi,n,(cj)<u(j> b

_ (4)
T{néi)i)7lt(j)77_(j)}(ni )= 9 Mo m
2

I ;
M x N¥ (M(J)77-2(J)) 4 3 577(”

1 k#i,n ) >p)
¥z ()7& Tk . (3.11)
2 f-i-mjf
where
mP =31 < @) and m{ =310 (3.12)
k#i k#i

This distribution is a special case of the normal distribution with hyperparame-

ters a = (M, @, 7D 7)), Using equation 2.4, the likelihood of D; conditional

on 711(1)7771(2)7 3(1), 12(2),,01 is given by:

L{n(l) nt? a}( l|77(1)7771(2)) NQ(I;(l)nz‘(l)aI;@)ni@)a 12(1) 2(2)702) (313)
(=9)7(=1)?

Thus, we aim to derive the posterior distribution

COININC) BN G

(771 37712)|7]( 0 77( i) S (2) 7.(1) 7_(2))7

7}”’ i i
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gj)) = 7777(7]1))~

The following theorem demonstrates that while the posterior distribution is

@) @)

( v XSS/ NEERRE

where 7

PR

complex, it provides a better estimate of the parameters in equation 2.4.

Theorem 3.1. Given equations 3.11 and 3.13, the postemor distribution of(
). (10, 1), and (70,72 s

® @)

conditional on (17( (i)
(m(l 7771 ‘77( W??E )1)7 )CXWO“"MZWMN( W z(l) 902(2)771(62)7 1( )a 22(2)apz)
k#i
LM WEN O, 2Py 20 52 o)
ki
+Zzwkh]\7 /(1) (1) /(2) (2)7 12(1), Z( ),pz)
k#i h#i
where for a € {—,+} and b € {—,+}:
1) (2
Ske = {0t g € (o0, ) ) € (=00, n)},
1) (2
St = {n n® ) € (=00 <1>> € (n®, 400},
St = (Y 0P € (uV, +00), 1P € (—o0, )},
St = P € (uV, +00), 0P € (u?, +00)},
with ,
M M
Cap = — + —(mP +m{P) + mPOm{>,
’ 4 2
and
WO - ZZC 1 2 (1) (2>) Agl)aA£2)7B7,2(1)aB»L2(2)7p1)IS}“ (7751)’771(2));
=1 a,b
e
N SN (D, 20 1y (),
=1 ab ‘”’
Yy w720 1g ("0,
=1 ab C‘”’ '
szlsz o,
=1 ab a,b
where forl=1,2:
(17/%2) 2(1) (l)+7_2(l /(l)ﬁ(l) (l) 20) _ 2(1)7_2(l)

AL =

2(1 l l
(1— Pz) z()+x() 2(l)x()

7"72

’ %

(1— pz) 12(1) +x;(l)T2(l)xEl)'
(3.14)

(2)
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Additionally,
M2
Cai = G N, (1= gV + 2D Wa)
X N(x;@)u@), (1- p?)af@) + x;(2)72(2)x§2))eR“vb. (3.15)
Moreover,
Ra,b =R X Ua,ba
and
pi 1 (1) _ 4y, @) _ 4
1 ng {Bi(l)BZ-(Q) (772 i )(m i )
- x;(l)ﬁfl) _ nl(l) x;(2)ﬁi(2) _ 772(2)
o e |
with
vt eta®es, 1 @Ya®)es:
o 0 o.w. ’ o 0 o.w. ’

oo 1 ea®esi [ 1 @a®) est,
+,— — P +,+ —
0 o.w. 0 o.w.

Note that to generate a from 7mp (|, n(?) based on equations 2.9 and 2.10,

we have:
mp(aln,n®) = r(aln®, n®) = x(u, 2O, 2D n®).
In this specific case, we use Proposition 1 from Burr and Doss (2005).

Proposition 3.2. Burr and Doss (2005) Suppose H is absolutely continuous
with a continuous density function h and its median is zero. Also, let 1y, ...,
be random samples from the distribution F', and the prior distribution for F is
a mizture of conditional Dirichlet processes foVIeHH)\(dG). Then the posterior
distribution 0 conditional on 11, ..., Yy is absolutely continuous with respect to \,
and

dist o #(¥)
Ao () = c(v) (H h (W)) k) | S S v,
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In this equation, the symbol dist in the product operator indicates that the
product is taken only over distinct values, #(%) is the number of distinct values
in the vector ¢, and ¢(%)) is a normalization constant.

Now, using this proposition, we ensure that the posterior distributions have
closed forms. Note that since the expression K (n(j ), ub )) is analytically complex,

in applications, simulation-based methods such as Gibbs sampling must be used.

Theorem 3.3. Suppose m\)" is the number of distinct values of 7720) and define:

dist
) — }: (@)
m mG)* e

Then, ©(p9), 70|00 has a distribution proportional to the product:

w1, 7 Pn) = gy (4D, ) K (), 4 D), (3.17)

where gnm(um U )) has a similar form to equations 2.9 and 2.10 with updated
parameters a@)’ , b’ , e’ , and d@) , given by:

0 — gty L ™Y
, 1 dist m@" () — ()2
pa)’ ) 4 = Z () — )2 (n )

A merde)
Gy ) £ m@ d(j)n(j)
cVJ) = - -
1+ m*dU) ’
1
m@* 4 g’

4@ =

KW, 1) is introduced in equation 3.16.

Remark 3.4. By integrating equation 3.17 with respect to T, we can derive the

marginal distribution of u9) conditional on n'9), which is proportional to:
" (Qa(j),, EOS b(j)’d(jy/a(j)') (K (n(”, ) 7 (3.18)

where t(d,l,s?) is a t-distribution with d degrees of freedom, location parameter
1, and scale parameter s. Moreover, conditional on ;1\ and n'9), the conditional

distribution of ﬁ s given by:

1, (M(j) _ c(j)’)2
() = p)
r (a + 2,b + 53 . (3.19)

4. Gibbs Sampler

The proposed Gibbs sampler consists of two main steps:
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Step 1: Updating (n"),n®). Fori = 1,...,m, generate the values of (n,gl), 772(2)) con-

ditional on the current values of (n§1), 77§2)) for j # 4, (u™M, u®), (+M), 7(2)),
and the data, iteratively.

Step 2: Updating (M, u®, 70 7)), To generate (p™), u®, 71, 7(2)) conditional
on (nM, 7)), the following two steps are performed:

Step 2-a: Generate (1Y, 1(?)) from the marginal distribution conditional on (n(*, n(?))
as derived in equation 3.18. This distribution is proportional to the
product of two t-distributions as in equation 3.18, multiplied by a fac-

tor that can be easily computed.

Step 2-b: Generate (71, 7(2)) conditional on (™, 7)) and (™), u?) from the
distribution given in equation 3.19. For j = 1,2, the distribution of ﬁ

follows a Gamma distribution, and 7(") and 7 are independent.

5. Simulation

To evaluate the proposed model, we conducted a simulation study. Three scenarios
were considered. In the first scenario, each center consists of two trinomial popu-
lations with probability vectors p = (0.5,0.4,0.1). In the second scenario, the two
trinomial populations have different probability vectors, with the first population
having p = (0.6,0.3,0.1) and the second having p = (0.5,0.3,0.2). Finally, in the
third scenario, the probabilities of the two populations are p = (0.5,0.4,0.1) and
p = (0.3,0.6,0.1), respectively. For each population, only one auxiliary variable
was considered, and both auxiliary variables were generated from the N(2,1) dis-

tribution.

In each case, ten centers were used, and observations for each center were
generated based on the described scenarios. Using these generated data, we can
now evaluate the proposed model. To do so, we first compute the log-odds and

their correlations. The variances were estimated using the following relation:

Fy Fy
+—
n151 71252

var(f) =

where 6 is the observed log-relative risk for ¢ = 1,2, S; is the number of successes
in the first cell of population i, F; is the number of failures, and n; is the number

of observations for population i. The correlation was set to —0.5.

Using this data, we implemented the model. The estimates, mean squared
errors (MSE), and confidence intervals for M, 32 DM DA W and p? are
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Table 1: Estimates, Mean Squared Errors, and Confidence Intervals for B and
53

1S 53
Estimate Scenario 1 0.0026 —0.0235
Scenario 2 0.0681 —1.1924
Scenario 3 0.5308 —0.5094
MSE Scenario 1 7.17x 1076 0.0005
Scenario 2 0.0046 1.4240
Scenario 3 0.2818 0.2598
Confidence Interval | Scenario 1 | (—0.0265,0.0336) | (—0.0660,0.0060)
Scenario 2 | (0.0340,0.1018) (—4.5655,0.0558)
Scenario 3 | (0.1839,0.7473) | (—1.0539, —0.0057)

reported in Tables 1-3. To compute these quantities, the Gibbs sampler was run
for 1500 iterations, with the first 500 iterations discarded as burn-in. (It should be
noted that convergence was checked using various criteria, and convergence was
confirmed.)

As seen, for Scenario 1, the computed confidence intervals contain zero; hence
hypothesis 2.3 is accepted. In other words, we conclude that the probability vectors
of the two populations are equal, consistent with the simulation settings.

In Scenario 2, except for the confidence intervals of () and D™, all other
confidence intervals contain zero, leading us to correctly reject hypothesis 2.3.
Specifically, we can observe that the probabilities for the first group of the two
trinomial populations are not equal, while the probabilities for the second group
are, which is consistent with Scenario 2.

In Scenario 3, all confidence intervals except for u(?) do not contain zero,
leading us to conclude that the probabilities for both groups of the two trinomial

populations are not equal.

6. A Real-World Example: Population Aged 15
and Older by Economic Activity Status from
2009 to 2021

In this section, we study the proposed model on a real dataset, examining the
population aged 15 and older in the Islamic Republic of Iran between 2009 and
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Table 2: Estimates, Mean Squared Errors, and Confidence Intervals for DU and

D(2)

D@ D®)

Estimate Scenario 1 0.0032 —0.0313
Scenario 2 0.1542 —1.7120

Scenario 3 0.4856 —0.3575

MSE Scenario 1 1.08 x 107° 0.0009
Scenario 2 0.0238 2.9327

Scenario 3 0.2360 0.1288

Confidence Interval | Scenario 1 | (—0.0475,0.0577) | (—0.0911,0.0068)

Scenario 2

(0.0783,0.2319)

(—6.9223,0.0532)

Scenario 3

(0.3409,0.5851)

(—0.6307, —0.0146)

Table 3: Estimates, Mean Squared Errors, and Confidence Intervals for u and

u@

p) e

Estimate Scenario 1 —0.0595 0.0183

Scenario 2 0.0132 —1.0729

Scenario 3 0.7236 —0.6491

MSE Scenario 1 0.0078 0.0033

Scenario 2 0.0046 1.1555

Scenario 3 0.5240 0.4229
Confidence Interval | Scenario 1 | (—1.1321,1.3267) | (—1.3401,1.3686)
Scenario 2 | (—1.7783,1.4935) | (—4.9956,1.1256)

Scenario 3

(0.1537,2.4793)

(—3.6337,0.1489)
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2021. The data is available in Table 4 and can be accessed from the website of
the Statistical Center of Iran. To ensure uniformity in the data across the two
periods, adjustments were made to account for changes in provincial boundaries
by merging the provinces of Tehran and Alborz for the year 2021.

The population aged 15 and older is categorized into employed individuals,
unemployed individuals, and economically inactive individuals. Therefore, the
dataset represents two trinomial populations: the population aged 15 and older
in 2021 as the first population, and the active population in 2009 as the second
population. Consequently, D represents the logarithm of the odds ratio of em-
ployment in 2021 to 2009, while Dy represents the logarithm of the odds ratio of
economically inactive individuals in 2021 to that group in 2009.

The analysis is conducted across 30 provinces, considered as study centers.
Additionally, the ratio of literate to illiterate individuals in 2021 is included as an
auxiliary variable for Dy and Ds, respectively. Following the simulation protocol,
the Gibbs sampler is executed 1500 times, with the first 500 executions regarded
as the burn-in period.

The estimate for D is 0.046, with a 95% confidence interval of (—0.055, 0.011).
Since the confidence interval encompasses zero, we fail to reject the null hypothesis
Hy : Dy = 0. This suggests that the ratio of employed individuals in 2009 and 2021
is statistically equivalent. Similarly, 81, the coefficient for the auxiliary variable,
is 0.0005, with a 95% confidence interval of (—0.0006,0.0013), which also includes
zero. This indicates no significant association between the employment odds ratio

and the ratio of literate individuals.

These findings imply that over the 12-year period, there was no measurable
change in the relative proportion of employment among the population aged 15
and older. Moreover, the literacy ratio did not emerge as a significant factor influ-
encing this trend. This result could suggest stability in the employment structure
across provinces, potentially reflecting a lack of transformative economic or policy
interventions during this time frame.

The estimate for D is —0.953, with a 95% confidence interval of (—2.895,0.213),
which also includes zero. Thus, we fail to reject the null hypothesis Hy : Do = 0,
suggesting no significant difference in the ratio of economically inactive individu-
als between 2009 and 2021. The auxiliary variable for D, the ratio of illiterate
individuals, also showed no significant association, with 85 = —0.071 and a 95%
confidence interval of (—0.218,0.186).

The lack of significant change in Ds suggests that the proportion of econom-
ically inactive individuals has remained stable over time. This result, combined
with the findings for D;, could indicate broader socio-economic trends in Iran,

such as persistent barriers to workforce participation or the inability of economic
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Figure 1: Densities of Dy, Ds, 51, and (s

growth to translate into improved employment opportunities. The insignificance
of the literacy ratio as a predictor highlights the potential need for more targeted
policies addressing the underlying factors of economic inactivity, such as skill mis-
matches or regional disparities.

The densities of Dy, Dy, 81, and [y are plotted in Figure 1. These results
underscore the importance of employing nuanced statistical models like the one
proposed in this paper to gain deeper insights into socio-economic trends and their

implications for policy-making.

7. Results and Discussion

In this study, we employed Bayesian meta-regression models to analyze treatment
effects across multiple clinical studies, effectively addressing heterogeneity and
confounding variables. Utilizing a semiparametric Bayesian framework, we incor-
porated auxiliary variables to account for variability among studies. We conducted

simulations across three datasets, each reflecting different levels of heterogeneity
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in treatment response, and estimated posterior distributions of treatment effects
using Gibbs sampling and the Metropolis-Hastings algorithm.

Our model was also applied to a real dataset, illustrating its practical appli-
cability. The results from both simulations and real-world applications highlight
the advantages of Bayesian meta-regression in clinical research. By incorporating
prior information and managing heterogeneity, these models yield more accurate
and interpretable results than traditional methods. Our findings align with the
assertions of Thompson (1994) and Burr and Doss (2005) that understand-
ing heterogeneity enhances the interpretability of treatment effects and supports
evidence-based decision-making in healthcare.

The flexibility of our framework in handling complex data structures positions
it as a valuable tool for future meta-analytic studies. As clinical research evolves,
the integration of Bayesian methods will become increasingly crucial for synthesiz-
ing evidence across diverse studies and informing clinical practice. In conclusion,
our study emphasizes the need for advanced statistical techniques, such as Bayesian
meta-regression, to tackle the challenges of heterogeneity in clinical trials. Future
research should consider extending these models to contexts like longitudinal stud-
ies and multi-arm trials to enhance their applicability and impact on healthcare
decision-making.
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Proof of theorem 3.1

By combining Equations 3.11 and 3.13, we can derive the posterior distribution of
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Here, ¢ represents the remaining terms of the posterior distribution introduced in
the theorem, which include the point masses. We now calculate each term of the
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above equation separately.
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Using some straightforward algebraic calculations, we have:
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Similarly, it can be shown that:
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