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Abstract: The classification is a fundamental methodology in the research of data

mining in recent years. The Naive Bayes classifier is one of the commonly used

data mining methods for classification. Although the strong feature independence

assumption in the Naive Bayes classifier makes it a tractable method for learning,

this assumption may not hold in real-world applications. Correlated Naive Bayes

classification is a generalization of the Naive Bayes classification model, consid-

ering the dependencies between features. One approach to reduce the Naivety of

the classifier is to incorporate feature weights into the conditional probability. In

this paper, we propose a method to incorporate feature weights into Correlated

Naive Bayes based on the MapReduce Model. The performance of all described

methods is evaluated by considering accuracy, sensitivity, and specificity metrics.
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1. Introduction

Data analytics is considered one of the most challenging research problems, and

data mining and machine learning methods are used to perform analysis. The

two main categories, namely clustering and classification, are included in data

mining schemes. The data classification process is primarily influenced by the

various classifiers, such as Naive Bayes, Support Vector Machine, and Extreme

Learning Machine. The Naive Bayes classification algorithm is widely used in data

analysis and other fields because of its simple and fast algorithm structure. The

approach of data classification with a machine learning algorithm is mostly based

on multiple classification (Chen (2016)). Data analysis involves extracting useful

insights from data, and one of the main tasks related to it is classification. Many

algorithms have been developed to perform data analysis tasks. The compatibility

of the MapReduce algorithm in handling data processing makes it more suitable

for analysis tasks. MapReduce is a programming model that was first proposed

by Google researchers for distributed parallel computing on massive amounts of

datasets. From a functional point of view, programmers are looking to eventually

map each word to its number of occurrences in all documents. This leads to

providing the mapping function, which is tasked with collecting data segments

for processing nodes, and the reduction function, which is tasked with collecting

temporary results from all processing nodes and sorting them to reach the final

results.

Classification algorithms are used to solve data mining problems related to

data collection from different sources. For example, classification techniques such

as Bayesian networks, genetic algorithms, genetic programming, and decision trees

are used to perform big data classification Fong et al. (2016). It is found in the

literature that data classification is primarily performed using machine learning

methods, optimization algorithms, and decision trees along with some other ap-

proaches. For example, Alessio Bechini (2016) developed a classifier by combining

the MapReduce concept with association rules and then named it the MapReduce-

based Associative Classifier (MRAC). The advantage of this method was related

to speed and scalability. Despite this, the proposed method did not perform well

on large datasets. Lopez et al. (2015) proposed an algorithm based on fuzzy rule-

based classification named Chi-FRBCS-BigDataCS to deal with large imbalanced

data. This algorithm addresses uncertainty in big data and enhances the strength

of learning in minimal classes. This algorithm performs fuzzy logic and implements

MapReduce processes to design processes using a cost-sensitive learning approach.

The performance of this algorithm is significantly improved based on classifica-

tion accuracy and computation time. Deng et al. (2017) proposed a classification

method of big data based on k-nearest neighbor. The k-means clustering method
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was used to divide the entire dataset into different parts, and KNN classification

was performed in each part of the cluster. Banchhor and Srinivasu (2021) pre-

sented optimization algorithms for enhancing Bayesian classification for big data

based on different functions incorporated within the MapReduce framework. The

Correlative Naive Bayes classifier has been considered a basic model and it has

been integrated with some algorithms, like cuckoo search and grey wolf optimiza-

tion. Prasetiyowati and Sibaroni (2024) developed a novel approach that makes

the Naive Bayes classifier capable of predicting future classification. In this work,

the process of expanding the dimension of the feature matrix based on historical

data from several previous time periods was implemented to obtain a long-term

classification prediction model using Naive Bayes. Sakthia et al. (2024) proposed

the big data clustering and classification model with improved fuzzy-based Deep

Architecture under the MapReduce framework. In this algorithm, a deep hybrid

model, which is the combination of a DCNN and Bi-GRU, is used for the classifi-

cation process. The improved score-level fusion procedure is used in this case to

obtain the final classification result.

Feature weighting is practical for alleviating Naive Bayes’ primary weakness

(see Zhang et al. (2021)). The näıveté in the classifier is that all the attributes

are assumed to be independent given the class. This assumption simplifies the

computation to infer the probability of a class given the data. Although the at-

tribute independence assumption in the Naive Bayes classifier makes it a tractable

method for learning, this assumption may not hold in real-world applications.

Correlated Naive Bayes classification is a generalization of the Naive Bayes classi-

fication model, considering the dependencies between attributes.

In the attribute set, some attributes are more important than others, so they

should have more influence on the final model than less-important attributes.

Thus, feature weighting assigns a discriminative weight to each attribute. Then the

feature weights are incorporated into the Correlated Naive Bayesian classification

formula to build a feature-weighted Correlative Naive Bayesian model.

In this paper, we propose a new improved classification model called Feature-

Weighted Correlative Naive Bayes (FWCNB) and give the general framework of

FWCNB, which pays attention to feature weighting. Classification models include

Naive Bayes classifier, Correlative Naive Bayes, and Correlative Naive Bayes with

feature weighting. Feature weighting techniques are used to improve the simple

Correlated Bayes classifier. Since the Naive Bayes approach cannot be directly

used to classify data with a large number of features, we improve the Correlated

Naive Bayes classifier by introducing a feature-weighted technique for handling a

large number of features. The performance of all described methods is evaluated

based on their accuracy, sensitivity, and specificity. All classification methods are
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implemented using the R programming language.

The organization of the paper is as follows: Section 2 presents a brief descrip-

tion of the big data classification algorithms. Section 3 discusses the performance

of the proposed methods, and Section 4 concludes the paper.

2. Descriptions of Bayesian classification methods

2.1 Naive Bayes classifier

Naive Bayes (NB) classifier is one of the most efficient and practical algorithms for

machine learning and data mining, which uses Bayes’ theorem with the assumption

of independence between attributes. Suppose X = (A1, A2, · · · , Ak) is an attribute

vector, and Ai is the ith attribute with different values of xi. Using the probability

rule, we have:

P (X|Ck) =

n∏
i=1

P (Ai = xi|Ck). (2.1)

The maximum posterior classification in Naive Bayes can be given as

arg max
k∈K
{P (Ck)× P (X|Ck)}, (2.2)

where K is the collection of all possible class labels k, n is the number of attributes,

P (Ck) is the prior probability of the class Ck, and P (Ai = xi|Ck) is the conditional

probability of Ai = xi given the class Ck. NB predicts the class label with the

highest posterior probability.

2.2 Correlative Naive Bayes classifier

In this section, the model construction of the Correlative Naive Bayes (CNB)

classifier is presented. The CNB classifier is a probabilistic algorithm that is often

used for classification tasks. It is an extension of the Naive Bayes classifier, which

assumes that all attributes are independent of each other. In the training phase,

the classifier creates the probability index table based on the features of the input

training data samples and the class values (Banchhor and Srinivasu (2020)). Let

B denote the database, represented as follows,

B = {dj,l}, l ≤ j ≤ r, 1 ≤ l ≤ m (2.3)

where r is the total number of data points, dj,l is the data value, m is the total

number of features, and m is the number of features in the data. The class to

which the object belongs is expressed as,

C = {C1, C2, · · · , Ci, · · · , Ck}, 1 ≤ i ≤ k (2.4)
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where k is the total number of classes.

The number of samples in the training data set depends on the unique class

value that represents the number of classes corresponding to the data. Then, the

mean and the variance of the data attribute in each class are computed as follows,

µi
l =

n∑
j=1

dj,l
n
,

σ2i

l =

n∑
j=1

(dj,l − µi
l)

2

n
(2.5)

where n is the number of samples in the ith class, µi
l and σ2i

l represent the mean

and the variance of the data values in the ith class, respectively. The CNB classifier

performs a correlative analysis to improve the classification using a correlation

function that is data-dependent. This includes a correlation factor represented as,

R =
2

m(m− 1)

m∑
l=1

m∑
q=l+1

D(fq, fl), (2.6)

where fq and fl are the qth and lth feature in the dataset, and D(fq, fl) is the

function that finds the relationship between fq and fl, as given below,

D(fq, fl) =

[
C(fq, fl) + 1

2

]
, (2.7)

where C(fq, fl) is known as Pearson’s correlation coefficient, which is used to

compute the linear correlation between the two datasets. Therefore, the resulting

training data matrix of the CNB classifier depends on the mean, the variance, and

the correlation function, expressed as,

{µk×m, σk×m, Rk×m}

where µk×m is the mean vector, σk×m is specified as variance, and Rk×m denotes

the correlation function, and it is illustrated in vector form. The testing results are

classified based on the probability index of the selected class with the attributes

combined with the correlation function, by analyzing the training data:

arg max
k∈K

[
P (Ck)× P (X|Ck)×Rk

]
. (2.8)

The CNB classifier selects the class having a maximum posterior probability value

as the final class.

2.3 Feature-weighted Correlative Naive Bayes classifier

It is generally believed that the more an attribute feature appears, the more im-

portant it is, and the greater the corresponding weight in the model. Therefore,
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the weight coefficient of the feature is set as

wi =
N(Ai = xi)

N(D)
,

wi represents the proportion of the number of samples to the total number of

samples when attribute Ai is xi. In the FWCNB method, the weight of each

attribute is incorporated into the CNB classification formula as shown in Eq. 2.9

C(X) = arg max
k∈K

[
P (Ck)× Pw(X|Ck)×Rk

]
. (2.9)

where

Pw(X|Ck) =

n∏
i=1

P (Ai = xi|Ck)wi .

To define the weight of each attribute, Hall (2007) suggested a decision tree

feature-weighted Naive Bayes (DTAWNB) model, which calculates the dependen-

cies between attributes through an unpruned decision tree trained from the train-

ing data. Jiang et al. (2019) proposed another improved model called correlation-

based attribute-weighted Naive Bayes (CAWNB). In CAWNB, the weight of each

attribute is defined as the difference between the mutual relevance and the average

mutual redundancy. Later, a sigmoid transformation is performed to ensure that

the weight is within a realistic range. The classification accuracy of CAWNB is

higher than NB, while it maintains the simplicity of the final model. Recently,

Chen et al. (2021) proposed an improvement of the NB algorithm by using feature

weighting and Laplace calibration to obtain the improved Naive Bayesian clas-

sification algorithm. Their results show that when the sample size is large, the

improved Naive Bayesian classification algorithm has high accuracy and is very

stable.

The general framework of FWCNB is described in the following Algorithm. By

executing the algorithm below, we can learn the feature weight vector w. To learn

w, we employ a correlation-based feature-weighting approach.

Algorithm FWCNB

Input: T -a training dataset, X-a test dataset

Output: the class label C(X) of X

1: Employ a feature-weighting method to learn the

weight of each feature wi(i = 1, 2, · · · , n)
2: Estimate the prior probability P (Ck)

3: Estimate the conditional probability Pw(X|Ck)

4: Predict the class label C(X) of X by Eq. 2.9

5: return C(X)
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Laplace calibration

When the number of training samples is small and the number of features is large,

the training samples are not enough to cover so many features, so the number

of samples of Ai = xi may be 0, and the whole category conditional probability

P (X|Ck) will be equal to 0. If this happens frequently, it is impossible to achieve

accurate classification. The way to solve the problem is to use Laplace’s calibra-

tion, which can completely solve the problem of category conditional probability

being 0. In this case, the weight coefficient is defined as follows:

wi =
N(Ai = xi) + 1

N(D) + qi
,

where qi represents the number of possible values of attribute Ai.

3. Numarical analysis and results

The purpose of this section is to investigate the classification performance of our

proposed FWCNB. The comparative analysis provided compares the performance

of the proposed algorithm with the standard NB and CNB competitors. For data

classification, the method included in the developed classifiers is implemented using

R programming.

3.1 Dataset description

The dataset utilized was taken from the UCI machine learning repository for exper-

imentation (Localization dataset. https://archive.ics.uci.edu/dataset/850/raisin).

The data relates to images of Kecimen and Besni raisin varieties grown in Turkey.

These varieties of raisin are of great value and are thus important. A total of

900 raisin grains were used, including 450 pieces from each variety. These images

were subjected to various stages of preprocessing, and seven morphological fea-

tures were extracted. The morphological features and descriptions used in feature

inference are given below.

Perimeter: It calculates the perimeter by measuring the distance between the

boundaries of the raisin grain and the pixels around it.

MajorAxisLength: Gives the length of the major axis, which is the longest line

that can be drawn within the raisin grain.

Eccentricity: Measures the eccentricity of the ellipse that has the same moments

as the raisins.

Extent: Gives the ratio of the region formed by the raisin grain to the total

pixels in the bounding box.
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3.2 Data split

The purpose of splitting the data into training and testing sets is to evaluate the

performance of the model on new and unobserved data. In this study, a percentage

of data was split for the training set and the rest for the testing set using the dplyr

library.

3.3 Implementation of algorithms

The implementation stage involves using the algorithm to process the data and

generate predictions for the testing data. The predictions were then evaluated to

determine the accuracy of the model. In this step, all three described algorithms

were applied to the training dataset to build the Bayesian classification model.

During the implementation stage, the data is fed into the algorithm, and the

algorithm calculates the conditional probabilities and correlation parameters for

each attribute given the class label. The CNB classifier model is built by consider-

ing the correlation between features. The FWCNB classifier is obtained using the

w-naive-bayes function in the rbooster library. These models are used to predict

the test dataset. The predictions are then evaluated to determine the accuracy

of the models. The performance evaluation process is carried out by varying the

number of mappers and the training data. The number of mappers used is 4,

representing the number of desktops used for the simulation of big data analysis,

and the data sample for training varies from 75% to 95%.

The Confusion Matrix technique is a commonly used method for evaluating

the performance of classification models. It provides a summary of the model’s

performance by showing the number of true positives, true negatives, false posi-

tives, and false negatives. These matrices are shown in figures 1 to 4. The results

of the analysis of the classification models are presented in table 1 for the data.

3.4 Performance evaluation metrics

In this section, accuracy, sensitivity, and specificity metrics are introduced to eval-

uate the performance of classifiers. The degree of veracity is measured using an

accuracy metric defined as the proportion of true results. The sensitivity and

specificity are defined as the proportion of correctly identified true positives and

true negatives.
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Figure 1: Confusion matrix for FWCNB with 75% training data

3.5 Comparative analysis of different Bayesian classifiers

This section illustrates the comparative analysis results obtained using dataset in

all the comparative methods for the three mappers by varying the training data

from 75% to 90%.

3.5.1 Performance evaluation of different Bayesian classifiers

The developed classifiers CNB and FWCNB are evaluated based on accuracy,

sensitivity, and specificity on the localization dataset. The performance evaluation

is presented in this section. The performance evaluation process is carried out with

a mapper size of 3 and on the training data. Table 1 shows the analysis of NB,

CNB, and FWCNB classifiers based on localization data.
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Table 1: Comparative analysis using dataset.

Trainin data(%) Mappers(M) NB CNB FWCNB

75 2 Acc 75.6 77.8 79.6

Sens 64.3 64.3 64.3

Spec 86.7 92.0 94.7

3 Acc 75.3 77.7 79.8

Sens 64.5 63.6 64.7

Spec 86.3 92.1 94.9

4 Acc 75.3 77.9 79.7

Sens 63.1 63.5 64.7

Spec 86.5 92.3 94.8

80 2 Acc 74.4 78.9 81.7

Sens 64.8 65.9 69.2

Spec 84.3 92.1 94.4

3 Acc 74.3 78.7 81.9

Sens 68.9 65.7 69.4

Spec 84.2 92.0 94.5

4 Acc 74.2 79.0 81.9

Sens 68.9 65.7 69.7

Spec 84.5 92.0 94.4

85 2 Acc 80.0 81.5 84.4

Sens 72.7 71.2 74.2

Spec 87.0 92.3 94.6

3 Acc 79.9 81.4 84.5

Sens 72.8 71.5 74.4

Spec 86.8 92.6 96.8

4 Acc 79.8 81.7 84.6

Sens 72.9 71.5 74.5

Spec 86.8 92.3 96.8

90 2 Acc 82.2 83.3 84.7

Sens 73.3 75.6 75.6

Spec 91.1 91.1 95.3

3 Acc 82.1 83.4 84.5

Sens 73.2 75.7 75.3

Spec 91.0 91.0 95.3

4 Acc 82.0 83.4 84.7

Sens 73.1 75.7 75.2

Spec 91.1 91.1 95.5
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Figure 2: Confusion matrix for FWCNB with 80% training data
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Figure 3: Confusion matrix for FWCNB with 85% training data

3.5.2 Analysis based on training percentage

Consider Table 1. The accuracy of the FWCNB classifier with 75% of training data

is 79.6%. However, with an increase in the training percentage, the accuracy of

the classifier improves. Similarly, for all the metrics, like sensitivity and specificity,

improved performance is achieved with an increased training percentage.
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Figure 4: Confusion matrix for FWCNB with 90% training data

3.5.3 Analysis based on mappers

In Table 1, when considering the FWCNB classifier for M = 3 with a training

percentage of 90%, the performance metrics, like accuracy, sensitivity, and speci-

ficity, are 84.5, 75.3, and 95.3, respectively. Similarly, for M = 4 with the training

percentage of 90%, the performance metrics, like accuracy, sensitivity, and speci-

ficity, are 84.7, 75.2, and 95.5. From the above analysis, we can interpret that the

sensitivity decreases with the increase in the mapper size. Moreover, it is observed

that the FWCNB classifier has enhanced performance in accuracy, sensitivity, and

specificity compared to other techniques. In this proposed work, the mapper size

depicts the number of desktops used.

4. Conclusion

This paper presents a relevant and innovative approach to enhancing Bayesian

classification using the MapReduce framework. FWCNB is a classifier developed

by modifying the CNB classifier using a feature weighting technique. To evaluate

the performance of the proposed approach, it is compared with the performance of

two existing methods, such as NB and CNB, in terms of accuracy, sensitivity, and

specificity. The CNB shows improved performance compared to NB, because the

highest posterior value is only selected as a consequential class. FWCNB performs

better than both NB and CNB, because the FWCNB algorithm is used to train

the CNB classifier. While the CNB model achieved 78.9% accuracy, the proposed
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FWCNB classifier achieved 81.7% accuracy. Therefore, it can be concluded that

the proposed FWCNB approach can effectively perform big data classification

using the CNB classifier, which could provide an accuracy of 81.7%, a sensitivity

of 69.2%, and a specificity of 94.4%. Although the proposed classifier suggests

high performance, the results may be affected by the datasets.
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