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Abstract:

The diabetes data set gathered by Michael Kahn at Washington University,

St. Louis, MO, which is available online at the UCI Machine Learning Repository,

is one of the rarely used data sets, especially for glucose prediction purposes in

diabetic patients. In this paper, we study the problem of blood glucose range pre-

diction, rather than raw glucose prediction, along with two other important tasks:

the detection of glucose increments or decrements and the prediction of abnormal

values, based on regular and NPH insulin doses, using this data set. Two com-

monly used machine learning approaches for time series data, namely LSTM and

CNN, are used along with a promising statistical regression approach, specifically

the non-parametric multivariate Gaussian additive mixed model, for the predic-

tion task. It is observed that although LSTM and CNN models are preferable in

terms of prediction error, the statistical method performs significantly better for

detecting abnormal values, which is a critical task for diabetic patients.
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1. Introduction

Diabetes is known as a disease characterized by high blood sugar levels, which is

either the result of a lack of insulin production or a disorder in its effectiveness. In

the absence of insulin, glucose is not absorbed by the cells, and blood glucose levels

increase (Makroum et al., 2022). The International Diabetes Federation (IDF)

estimates that 578 million adults will have diabetes by 2030, and 700 million by

2045 (IDF Diabetes Atlas, 2021).

Over the last decade, many advanced diabetes control and detection technolo-

gies have been developed using artificial intelligence (Ameen et al., 2021). Many

predictive analytics methods, including machine learning algorithms, data mining

techniques, and statistical approaches, are used to predict future events and risks

for diabetic patients. One of the most important tasks in aiding diabetic patients

is blood glucose prediction. Various methods, including classical time series ap-

proaches, regression models, and machine learning techniques, have been applied

to different data sets to predict blood glucose based on various input variables,

such as insulin, carbohydrate intake, and physical activity (see Gani et al., 2008;

Eren-Oruklu et al., 2009; Sparacino et al., 2007; Turksoy et al., 2013; Wang et

al., 2014; Xie and Wang, 2017, among others). In recent years, there has been a

growing trend of applying machine learning algorithms to predict blood glucose

levels (see Zecchin et al., 2012; Plis et al., 2014; Mirshekarian et al., 2017; Mhaskar

et al., 2017; Fox et al., 2018; Xie and Wang, 2020, and references therein). For a

systematic review of machine learning and smart devices for diabetes management,

see Makroum et al. (2022).

In this paper, we analyze one of the less frequently considered diabetes data

sets, gathered by Michael Kahn at Washington University, St. Louis, MO, which is

available online at UCI machine learning repository (2017). This data set has only

been used by several authors (Xu et al., 2019; Backurs et al., 2019; Yang and Tan,

2021; Gosiewska et al., 2019; Atamturk and Gomez, 2019), mainly as a benchmark

to examine the performance of regression methods. Although many other papers

mentioned on the data set page in UCI machine learning repository (2017) claim to

have used this data set, they have actually used another diabetes data set, called

the Pima Indians diabetes data set, also available online at UCI machine learning

repository (2017). The Pima Indians data set is used for classifying subjects as

diabetic or non-diabetic (see Zhou and Jiang, 2004; Melville and Mooney, 2004;

Eggermont et al., 2004, among many others), while the diabetes data set gathered

by Michael Kahn at Washington University, St. Louis, MO, is more suitable for

regression tasks since the response variables are blood glucose measurements.

Another novel aspect of our work is related to the prediction task. Many of the

works mentioned above focus on predicting the raw blood glucose levels of patients,
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while in this paper, we aim to predict the blood glucose range — the minimum and

maximum glucose levels during a day — along with two other important events.

The first event is the increment or decrement of the maximum or minimum blood

glucose, and the second event is an abnormal situation, defined as high glucose

levels where the maximum blood glucose exceeds 180 mg/dL. We use two machine

learning (ML) methods and one statistical method (SM) for predicting the current

and future blood glucose range, as well as the two criteria mentioned above.

The rest of the paper is organized as follows. The diabetes data set is intro-

duced in Section 2, along with the pre-processing approach used in this paper.

The ML and SM approaches are described in Section 3. Finally, the results of the

data analysis are presented in Section 4. The R and Python codes are available

online at https://github.com/mortamini/diabetes/.

2. Diabetes data set and pre-processing

The diabetes data set, gathered by Michael Kahn at Washington University, St.

Louis, MO, and available online at UCI machine learning repository (2017), in-

cludes patient records obtained from two sources: an automatic electronic record-

ing device and paper records. The automatic device had an internal clock to

timestamp events, whereas the paper records only provided ”logical time” slots

(breakfast, lunch, dinner, bedtime). For paper records, fixed times were assigned

to breakfast (08:00), lunch (12:00), dinner (18:00), and bedtime (22:00). Thus,

paper records have fictitious uniform recording times, whereas electronic records

have more realistic time stamps.

The raw diabetes data set contains files for 69 cases (subjects), and for each

case, it includes the following features:

(1) Date in MM-DD-YYYY format

(2) Time in XX:YY format

(3) Code

(4) Value

The Code field is deciphered in Table 1

There are a large number of missing values in this data set since most sub-

jects reported only a few codes during the day. Therefore, we only considered

codes 33 (regular insulin dose), 34 (NPH insulin dose), and 58-64 (blood glucose

measurements).

The first step in pre-processing was to impute the missing values. We used

the Multivariate Imputation by Chained Equations (MICE) method (Van Buuren

https://github.com/mortamini/diabetes/
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Table 1: Description of the codes in the diabetes data set.

code description

33 Regular insulin dose

34 NPH insulin dose

35 UltraLente insulin dose

48 Unspecified blood glucose measurement

57 Unspecified blood glucose measurement

58 Pre-breakfast blood glucose measurement

59 Post-breakfast blood glucose measurement

60 Pre-lunch blood glucose measurement

61 Post-lunch blood glucose measurement

62 Pre-supper blood glucose measurement

63 Post-supper blood glucose measurement

64 Pre-snack blood glucose measurement

65 Hypoglycemic symptoms

66 Typical meal ingestion

67 More-than-usual meal ingestion

68 Less-than-usual meal ingestion

69 Typical exercise activity

70 More-than-usual exercise activity

71 Less-than-usual exercise activity

72 Unspecified special event

and Groothuis-Oudshoorn, 2011) to impute the missing values. Since our aim was

to predict daily information, we computed the average regular and NPH insulin

doses for each day (as the input variables). The blood glucose range was then

obtained by computing the minimum and maximum daily blood glucose based on

codes 58-64 (as the output variables). Therefore, the dimension of the input and

output variables is 2, considering the independent time series for each case.

Figure 1 shows the plot of the number of days recorded for each case in the

diabetes data set.

The resulting pre-processed data set is suitable for predicting the current blood

glucose range based on the average regular and NPH insulin doses. However, a

more important task is to predict the future blood glucose range based on the cur-

rent values of the variables. Thus, a one-day lagged data set was also constructed,

where the next day’s blood glucose range is the output variable (case-independent

values of dimension 2) and the current values of average regular and NPH insulin

doses, the current values of the blood glucose range, and the pre-determined val-
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Figure 1: Number of days recorded for each case in diabetes data-set.

ues of the next-day average regular and NPH insulin doses are the input variables

(case-independent time series of dimension 6).

3. Methods

Two ML and one SM approaches are considered for blood glucose range prediction

based on time series data. The Long-Short-Term-Memory recurrent neural net-

work (LSTM) and Convolutional Neural Network (CNN) are the most commonly

used ML methods for sequential data sets. The SM method, the Multivariate

Gaussian Additive Mixed Model (MGAMM), is also used as a statistically promis-

ing method for regression tasks.

3.1 LSTM

The LSTM (Hochreiter and Schmidhuber, 1997) is a generalization of the recurrent

neural network (RNN) that is used for sequential data sets, including a sequence

of inputs xtt = 1T and an output (target) variable, which can be either a sequence

ytt = 1T or a single output y. RNNs have three common types: many-to-many,

many-to-one, and one-to-many. A single-hidden-layer, many-to-many RNN has
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the following structure:

xt = σ(w>x xt−1 + bx)

ht = σ(w>h1xt + w>h2ht−1 + bh)

ot = σ(w>o ht + bo), (3.1)

where σ(·) is the activation function, and wx, wh1, wh2, and wo are unknown weight

vectors, while bx, bh, and bo are unknown biases that should be learned from the

data by minimizing an appropriate loss function. The common loss function used

for regression tasks is the mean squared error loss, which is also used in this study.

A single-hidden-layer, many-to-one RNN has the same structure as in (3.2),

except that the single output is obtained as follows:

o = σ(w>o hT + bo), (3.2)

where hT stands for the last value of the hidden states in the sequence.

The LSTM network is an RNN that overcomes the vanishing gradient prob-

lem (Hochreiter, 1991) encountered in traditional RNNs by flowing the informa-

tion through input, output, and forget gates (Hochreiter and Schmidhuber, 1996).

These gates are shown inside a cell of the LSTM network in Figure 2.

Figure 2: Architecture of LSTM model.

The LSTM has been frequently used for classification and regression tasks

based on sequential data (for papers that have used LSTM for raw glucose predic-

tion, see, for instance Makroum et al., 2022; Xie and Wang, 2020, and references

therein).

In this study, we used four modules of many-to-many LSTMs for the current-

time prediction of the glucose range, with an architecture presented in Figure 3

(top). A combination of two many-to-many and two many-to-one LSTM mod-

ules were also used for future prediction, with the architecture shown in Figure 3

(below).
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Figure 3: Architecture of LSTM for current-time (top) and future (below) Glucose-

range prediction.

3.2 CNN

Another common ML method that can be used for regression based on sequential

data sets is CNN (see, e.g., Venkatesan and Li, 2017). CNN is a special type

of network in which the matrix multiplication operator is replaced by convolution

operators. In a 2D CNN layer with activation function σ(·), a d1×d2 filter (kernel)
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Figure 4: Architecture of CNN for current-time (left) and future (right) glucose-

range prediction.

K, and stride s, the output of the layer is obtained by the following convolution:

Zij = σ

(
d1∑
l=1

d2∑
m=1

KlmV(i−1)∗s+l,(j−1)∗s+m

)
(3.3)

The architecture of CNN for current-time glucose-range prediction is shown in

Figure 4 (left), and for future prediction, the architecture is shown in Figure 4

(right).

3.3 MGAMM

Generalized Additive Models (GAMs) (Hastie and Tibshirani, 1987) are non-

parametric regression models for modeling the relationship between a set of inputs

and a target variable, with a distribution belonging to the exponential family of

distributions. A common case is the Gaussian (or Multivariate Gaussian for mul-

tivariate targets) additive model. For our study, where the target sequence is a

two-dimensional time series, the Multivariate Gaussian Additive Model (MGAM)

is expressed as follows:

y
(i)
t ∼ N2

µ0 +

p∑
j=1

fj(x
(i)
j,t),Σ

 , (3.4)

whereN2 stands for the bivariate normal distribution, µ0 is the vector of intercepts,

Σ is a 2×2 unknown covariance matrix, and fjs are unknown functions (centered to
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zero), which are learned from the data. Typically, one assumes that fjs belong to

the space spanned by spline bases of a specified degree and are estimated through

the coefficients of their expansion over this space (see Hastie and Tibshirani, 1987,

and references therein).

The MGAMM is a generalization of MGAM by adding a random effect term to

the mean of the multivariate Gaussian distribution. For our case, it is as follows

y
(i)
t ∼ N2

µ0 +

p∑
j=1

f(x
(i)
j,t) + ai,Σ

 , (3.5)

where ai ∼ N(0, σ2), is the random effect term. The random effect term is common

across the sequence (i.e. for all values of t). This helps the MGAMM to model

the dependency across the time series.

Figure 5: A sample of Glucose-range prediction results using CNN (left) and LSTM

(right) for current-time (top) and future (below) prediction.

4. Results

All three models (LSTM, CNN, and MGAMM) were applied to both current-time

and future glucose-range predictions. The out-of-sample prediction errors for all
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Figure 6: A sample of Glucose-range prediction results using MGAMM without

(top) and with (below) random-effects for current-time (left) and future (right)

prediction.

methods were computed using 3-fold Root Mean Square Error (RMSE):

(4.6)

where TSf represents the test set of the fth fold, and Ni is the number of days

reported by case i in TSf .

The 3-fold Percent of Correct Direction (PCD) was also calculated to compare

the models’ ability to correctly identify the increase or decrease in glucose levels

over time, as follows:

3-fold PCD =
1

3

3∑
f=1

∑
i∈TSf

1

Ni

Ni∑
t=2

I
(

sign(y
(i)
t − y

(i)
t−1) = sign(ŷ

(i)
t − ŷ

(i)
t−1)

)
(4.7)

One critical task in glucose prediction is detecting abnormal situations where

glucose levels exceed 180 mg/dL. The 3-fold Percent of Correct Abnormal Detec-

tion (CAD) criterion was defined and calculated to compare the models on this

task:

3-fold CAD =
1

3

3∑
f=1

∑
i∈TSf

∑Ni

t=1 I
(
y
(i)
t,max > 180 & ŷ

(i)
t,max > 180

)
∑Ni

t=1 I
(
y
(i)
t,max > 180

) (4.8)
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Figure 7: Direction prediction for LSTM (left) and CNN (right) for future (below)

and current time (top) lag for random ranges of lengths 100 (top) and 50 (below).

The +1 values are for increment, the -1 values show the decrement and zero values

show no changes in time.

Table 2: Results of different methods for diabetes data set.

criteria

method 3-fold RMSE 3-fold PCD (%) 3-fold CAD (%)

LSTM 139.5 42.73 45.20

CNN 2013.8 37.57 68.59

lagged LSTM 109.0 12.90 48.20

lagged CNN 109.1 43.60 73.70

MGAM 125.3 47.20 88.12

lagged MGAM 201.1 35.99 95.10

MGAMM 128.9 55.63 72.30

lagged MGAMM 195.3 36.63 84.72

Different samples of glucose-range predictions for each method are shown in

Figures 5 and 6. Additionally, the values of the three proposed criteria are pre-

sented in Table 2 for all competing models. While the ML models (LSTM and

CNN) performed better based on the 3-fold RMSE and PCD, the SM model
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Figure 8: Direction prediction for MGAMM with (right) and without (left)

random-effect for the current time (top) and future (below) for a random range of

length 50. The +1 values are for increment, the -1 values show the decrement and

zero values show no changes in time.

(MGAMM) achieved significantly higher values for the 3-fold CAD. Moreover,

future glucose prediction is generally more useful (lagged models in Table 2), lead-

ing us to conclude that the lagged MGAMM is the most reliable technique for

glucose control in diabetic patients. However, combining the lagged MGAMM

with a lagged LSTM (or even CNN) could be beneficial for multi-purpose next-

day glucose-range prediction.

Direction prediction samples are illustrated in Figures 7 and 8 for CNN-LSTM

and MGAMM models, respectively. Furthermore, random samples of abnormal

glucose detection results are presented in Figures 9 and 10.

It is important to note that RMSE, PCD, and CAD are different criteria.

RMSE measures the distance error between predicted and real values, while PCD

and CAD measure correct direction prediction and abnormal detection, respec-
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Figure 9: Abnormal glucose detection for LSTM (left) and CNN (right) for future

(below) and current time (top) lag for random ranges of length 100. The 1 values

are for abnormal glucose, and zero values show no abnormality.

tively. A model may achieve a low RMSE across the entire test sequence but still

predict the direction (increase or decrease) incorrectly for many steps and detect

only a few abnormal glucose values. This is possible since the percentage of ab-

normal situations is low compared to the sequence length, and a small prediction

error in abnormal values (e.g., a real value of 183 mg/dL versus a predicted 178

mg/dL) may lead to incorrect detection. Furthermore, while the predicted val-

ues may closely follow real values, the direction of two successive points may be

predicted in reverse.

5. Concluding remarks

It remains an open question how best to combine models to develop a multi-

purpose, high-performance solution for blood glucose range and abnormal situation

prediction and control. This could be explored in future research. Another area of

interest is utilizing additional available information (such as codes 35, 48, 57, and

65-72) to improve prediction accuracy. Lastly, how to predict glucose ranges with

incomplete inputs (with or without imputation) is another challenge for future

studies.
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Figure 10: Abnormal glucose detection for MGAMM with (right) and without

(left) random-effect for the current time (top) and future (below) for a random

range of length 50. The 1 values are for abnormal glucose, and zero values show

no abnormality.
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