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Abstract: We introduce the Beta Modified Exponential Power Series (BMEPS)

distribution, a parametric model adept at handling increasing, decreasing, bathtub-

shaped, and unimodal failure rates. Constructed to address a latent complemen-

tary risk problem, this distribution amalgamates elements from the Beta Modified

Exponential (BME) and power series distributions. Notably, it encompasses es-

sential distributions found in the literature, like the Beta Modified Exponential

Poisson (BMEP), Beta Modified Exponential Geometric (BMEG), and Beta Mod-

ified Exponential Logarithmic (BMEL) models as special subtypes. This study

includes a detailed mathematical treatment of the BMEPS distribution, providing

closed-form expressions for its density, cumulative distribution, survival function,

failure rate function, r-th raw moment, and order statistics moments. Addition-

ally, we explore maximum likelihood estimation and present Fisher information

matrix components. Lastly, we demonstrate the versatility of this distribution by

applying it to real-world data.
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1. Introduction

The well-known exponential distribution has been widely studied and applied in

various aspects. The assumption of a monotonic failure rate of a product, however,

may not be suitable and accurate in reality. On the other hand, when modeling

monotone hazard rates, the Exponential distribution may be an initial choice be-

cause of the possibility of its negatively and positively skewed density shapes.

Several distributions have been proposed in the literature to model lifetime data

by compounding some useful lifetime distributions. Kuş (2007) introduced a two-

parameter distribution known as the exponential-Poisson (EP) distribution, which

has a decreasing failure rate, by compounding an exponential distribution with a

Poisson distribution. In the same fashion, the modified Weibull (MW) distribution

was proposed by Lai et al. (2003) and the extended flexible Weibull distribution

was given by Bebbington et al. (2007).

Lifetime distributions and power series distributions constitute fundamental

components within statistical modeling, offering versatile frameworks for analyz-

ing diverse sets of data across numerous fields. This study embarks on a com-

prehensive exploration by synthesizing findings from prominent contributions in

this domain. In this concept, the Beta exponential (BE) distribution is introduced

by Nadarajah and Kotz (2006), the exponential-geometric (EG) is introduced by

Adamidis and Loukas (1998), the exponential-logarithmic (EL) is introduced by

Tahmasbi and Rezaei (2008), the exponential-power series (EPS) is introduced by

Chahkandi and Ganjali (2009), and the generalized exponential power series (GEPS)

by Mahmoudi and Jafari (2012). Also, Barreto-Souza and Cribari-Neto (2009) and

Louzada et al. (2011) introduced the exponentiated exponential-Poisson (EEP)

and the complementary exponential-geometric (CEG) distributions where the EEP

is the generalization of the EP distribution, and the CEG is complementary to the

EG model proposed by Adamidis and Loukas (1998).

For more studies in this concept, Bagheri et al. (2016) presented the Gener-

alized Modified Weibull Power Series Distribution, enriching the theoretical un-

derstanding and practical applications of this model. Oluyede et al. (2020) fur-

ther expanded this discourse by shedding light on the Exponentiated Generalized

Power Series distribution, elucidating its properties and wide-ranging applications.

Raffiq et al. (2022) delved into the Marshall–Olkin Inverted Nadarajah–Haghighi

Distribution, offering insights into its estimation techniques and practical usage.

Additionally, Osatohanmwen et al. (2022) contributed a novel perspective through

the Exponentiated Gumbel–Weibull Logistic distribution, specifically applying it

to model COVID-19 infections in Nigeria. Finally, Khojastehbakht et al. (2023)

explored the Beta Exponential Power Series Distribution, augmenting the under-

standing of distributional characteristics within the realm of lifetime distributions



The Beta Modified Exponential Power Series Distribution 97

and power series distributions. This amalgamation of studies collectively enriches

the landscape of statistical distributions, fostering a deeper comprehension and

wider application scope within this crucial domain of statistical analysis.

In this paper, we introduce the Beta Modified Exponential Power Series (BMEPS)

distributions aiming to enhance statistical modeling. BMEPS distributions pro-

vide a comprehensive theoretical framework that includes their density, failure rate

functions, and a detailed study of specific cases. These distributions are shown

to handle various failure rate patterns—ranging from increasing and decreasing to

bathtub-shaped and unimodal. In Section 2, we establish the novel category of

Beta Modified Exponential Power Series (BMEPS) distributions, presenting their

density and failure rate functions. Additionally, we delve into the detailed study

of specific distributions within this framework, demonstrating that the failure rate

can exhibit varying patterns. It may increase, decrease, assume a bathtub shape,

or display a unimodal form. In Section 3, we derive quantiles and moments of

BMEPS distributions, alongside elucidating the probability density function of

the ith order statistic. Indeed, Section 3 furnishes expressions for the rth raw mo-

ments of the BMEPS distribution and the ith order statistic. The methodology

for estimation via maximum likelihood and the expression for Fisher’s informa-

tion matrix are expounded in Section 4. Finally, in Section 5, we showcase the

flexibility and potential of the new distribution through its application to a real

dataset.

2. The class of BMEPS distribution

Marshall and Olkin (1997) introduced a parameterization scheme for a distribution

function F (y, a) by defining another distribution function as

F (y, a) =
F (y)

F (y) + a(1− F (y))
, y ∈ R, a > 0.

We use the parameterization to obtain the two-parameter distribution known as

the modified exponential (ME) distribution function

F̂ (y) =
1− e−βy

1− (1− α)e−βy
, y > 0, α, β > 0.

Preda et al. (2011) introduced this distribution. We obtain the cumulative dis-

tribution function (CDF) of the BME distribution with five parameters α ≥ 0,

β ≥ 0, a > 0, b > 0 and k > 0 as

G(y) = IF̂ (y)(α, β), y > 0, a, b, α, β > 0.
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where IF (y)(α, β) is

IF (y)(α, β) =
Γ(a+ b)

Γ(a)Γ(b)

∫ F (y)

0

ta−1(1− t)b−1dt, y > 0, a, b, α, β > 0.

and the density function of the BME distribution is given by

g(y) = (
Γ(a+ b)

Γ(a)Γ(b)
)(

1 − e−βy

1 − (1 − α)e−βy
)(a−1)(

αe−βy

1 − (1 − α)e−βy
)(b−1)(

αβe−βy

(1 − (1 − α)e−βy)2
).

The significance of this distribution lies in its capability to model both monotonic

and non-monotonic failure rates, prevalent in lifetime problems and reliability

analyses. Suppose N represents a random variable denoting the count of failure

causes, where N = 1, 2, .... If we consider N to follow a power series distribution

(truncated at zero), its probability function is defined as follows

p(N = n) =
anθ

n

C(θ)
, n = 1, 2, ... and θ ∈ (0, S),

where a1, a2, ... is a sequence of nonnegative real numbers, where at least one

of them is strictly positive, S is a positive number no greater than the ratio

of convergence of the power series
∑∞
n=1 anθ

n and C(θ) =
∑∞
n=1 anθ

n. Useful

quantities of some power series distributions are given in Table 1.

The Beta Modified Exponential Power Series Distribution, denoted by BMEPS

(α, β, a, b, k, θ), is defined by the marginal CDF of X = max{Y1, Y2, . . . , YN}, i.e.,

F (x) = 1−
C
(
θ(IF (x)(α, β))k

)
C(θ)

(2.1)

where α, β, θ > 0 and a, b, k ≥ 0. The PDF of the BMEPS(α, β, a, b, k, θ) is given
by

f(x) =

Bk,θ(
1 − e−βx

Aα,β
)(a−1)(

αe−βx

Aα,β
)(b−1)(

αβe−βx

(Aα,β)2
)(IF (x)(α, β))k−1C

′
(
θ
(
IF (x)(α, β))k

)
C(θ)

,

where Aα,β = 1 − (1 − α)e−βx and Bk,θ = kθ(
Γ(a+ b)

Γ(a)Γ(b)
). The survival function

and hazard rate function of the BMEPS distribution are given, respectively, by

S(x) =
C
(
θ
(
IF (x)(α, β))k

)
C(θ)

,

and

h(x) =

Bk,θ(
1 − e−βx

Aα,β
)(a−1)(

αe−βx

Aα,β
)(b−1)(

αβe−βx

(Aα,β)2
)(IF (x)(α, β))k−1C

′
(
θ
(
IF (x)(α, β))k

)
C
(
θ
(
IF (x)(α, β))k

) .

The BMEPS distribution is a mixture of the BME distribution with weights

defined by the power series distribution.
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Table 1: Useful quantities of some power series distributions
Distribution an C(θ) C

′
(θ) C

′′
(θ) C(θ)

−1 �

Poisson n!−1 eθ − 1 eθ eθ log(θ + 1) θ ∈ (0,∞)

Logarithmic n−1 −log(1− θ) (1− θ)−1 (1− θ)−2 1− e−θ θ ∈ (0, 1)

Geometric 1 θ(1− θ)−1 (1− θ)−2 2(1− θ)−3 θ(θ + 1)
−1

θ ∈ (0, 1)

Binomial
(
m
n

)
(θ + 1)

m − 1 m(θ + 1)
m−1 m(m−1)

(θ+1)2−m
(θ − 1)

1
m − 1 θ ∈ (0, 1)

2.1 Special cases of BMEPS

In the following subsection we study in detail some special cases of the class

BMEPS of distributions. This class of distributions contains several lifetime mod-

els such as: beta modified exponential Poisson (BMEP), beta modified exponential

logarithmic (BMEL), and beta modified exponential geometric (BMEG) and dis-

tributions as special cases.

2.1.1 Beta Modified Exponential Poisson Distribution

The beta modified exponential Poisson (BMEP) distribution is a special case of

the BMEPS distributions with an = 1
n! and C(θ) = eθ − 1. Using the CDF (2.1),

the CDF of the Beta Modified Exponential Poisson (BMEP) distribution is given

by

FBMEP (x) = 1− eθ(IF (x)(α,β))
k − 1

eθ − 1

where α, β, θ > 0 and a, b, k ≥ 0. The associated PDF and hazard rate function of
this distribution are given, respectively, by

fBMEP (x) =

Bk,θ(
1 − e−βx

Aα,β
)(a−1)(

αe−βx

Aα,β
)(b−1)(

αβe−βx

(Aα,β)2
)(IF (x)(α, β))k−1eθ(IF (x)(α,β))

k

eθ − 1

and

hBMEP (x) =

Bk,θ(
1 − e−βx

Aα,β
)(a−1)(

αe−βx

Aα,β
)(b−1)(

αβe−βx

(Aα,β)2
)(IF (x)(α, β))k−1eθ(IF (x)(α,β))

k

e

(
θ
(
IF (x)(α,β))

k

)
− 1

.

The plots of the PDF, CDF and hazard rate function of the BMEP distribution

for some values of α, β, θ, a, b and k are given in Figure 1. Models that present

a bathtub-shaped failure rate are very useful in survival analysis. The modeling

and analysis of lifetimes are important aspect of statistical work in a wide variety

of scientific and technological fields. The new distribution due to its flexibility in

accommodating all forms of the risk function seems to be an important distribu-

tion that can be used in a variety of problems in modeling survival data.

The exponential distribution does not provide a reasonable parametric fit for mod-

eling phenomena with non-monotone failure rates such as the bathtub-shaped and
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Figure 1: Plots of the density function, cumulative distribution function and

survival function of the BMEP distribution for different values of the vector

(α, β, θ, a, b, k).

unimodal failure rates which are common in reliability and biological studies. In

order to identify the type of failure rate of lifetime data, many approaches have

been proposed.

2.1.2 Beta Modified Exponential Geometric Distribution

The beta modified exponential geometric (BMEG) distribution is a special case

of the BMEPS distributions with an = 1 and C(θ) = θ(1− θ)−1. Using the CDF

(2.1), the CDF of the beta modified exponential geometric (BMEG) distribution

is given by

FBMEG(x) = 1−

(
θ
(
IF (x)(α, β))k

)(
1− (θ

(
IF (x)(α, β))k)

)−1
θ(1− θ)−1

,

where α, β > 0, 0 ≤ θ ≤ 1 and a, b ≥ 0. The PDF of BMEG fBMEG(x) is

Bk,θ(
1 − e−βx

Aα,β
)(a−1)(

αe−βx

Aα,β
)(b−1)(

αβe−βx

(Aα,β)2
)(IF (x)(α, β))k−1

(
1 − θ(IF (x)(α, β))k

)−2

θ(1 − θ)−1
.

The plots of the PDF, CDF and hazard rate function of the BMEG distribution
for some values of α, β, θ, a, b and k are given in Figure 2. The hazard rate function
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Figure 2: Plots of the density function, cumulative distribution function and haz-

ard rate function of the BMEG distribution for different values of the vector

(α, β, θ, a, b, k).

of the BMEG distribution is given by

hBMEG(x) =

Bk,θ(
1 − e−βx

Aα,β
)(a−1)(

αe−βx

Aα,β
)(b−1)(

αβe−βx

(Aα,β)2
)
(

1 − θ(IF (x)(α, β))k
)−2

(
IF (x)(α, β)

)(
1 − (θ

(
IF (x)(α, β))k)

)−1
.

2.1.3 Beta Modified Exponential Logarithmic Distribution

The beta modified exponential logarithmic (BMEL) distribution is a special case

of the BMEPS distributions with an = 1
n and C(θ) = −log(1−θ). Using the CDF

(2.1), the CDF of the BMEL distribution is given by

FBMEL(x) = 1−
log
(

1− θ
(
IF (x)(α, β))k

)
log(1− θ)

(2.2)

where α, β > 0, 0 ≤ θ ≤ 1 and a, b, k ≥ 0.
The plots of the PDF, CDF and hazard rate function of the BMEL distribution
for some values of α, β, θ, a, b and k are given in Figure 3. The associated PDF of
BMEL and hazard rate function are obtained by the equation 2.2, respectively, by

fBMEL(x) =

Bk,θ(
1 − e−βx

Aα,β
)(a−1)(

αe−βx

Aα,β
)(b−1)(

αβe−βx

(Aα,β)2
)(IF (x)(α, β))k−1(1 − θ

(
IF (x)(α, β))k)−1

log(1 − θ)
,
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Figure 3: Plots of the density function, cumulative distribution function and

hazard rate function of the BMEL distribution for different values of the vector

(α, β, θ, a, b, k).

and

hBMEL(x) =

Bk,θ(
1 − e−βx

Aα,β
)(a−1)(

αe−βx

Aα,β
)(b−1)(

αβe−βx

(Aα,β)2
)(IF (x)(α, β))k−1(1 − θ

(
IF (x)(α, β))k)−1

log
(

1 − θ
(
IF (x)(α, β))k

) .

2.1.4 Beta Modified Exponential Binomial Distribution

The beta modified exponential binomial (BMEB) distribution is a special case

of BMEPS distributions with an =
(
m
n

)
, C(θ) = (θ + 1)

m − 1 and C ′(θ) =

m(θ + 1)
m−1

. Using CDF (2.1), the CDF of BMEB distribution is given by

FBMEB(x) = 1−
(θ
(
IF (x)(α, β))k + 1)

m − 1

(θ + 1)
m − 1

where α, β > 0, 0 ≤ θ ≤ 1 and a, b, k ≥ 0. The PDF of BMEB is

fBMEB(x) =

Bk,θ(
1− e−βx

Aα,β
)(a−1)(

αe−βx

Aα,β
)(b−1)(

αβe−βx

(Aα,β)2
)(IF (x)(α, β))

k−1
(
m(θ

(
IF (x)(α, β))

k + 1)
m−1

)
(θ + 1)m − 1

.
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The hazard rate function of BMEB distribution is given by

hBMEB(x) =

Bk,θ(
1− e−βx

Aα,β
)(a−1)(

αe−βx

Aα,β
)(b−1)(

αβe−βx

(Aα,β)2
)(IF (x)(α, β))

k−1
(
m(θ(IF (x)(α, β))

k + 1)
m−1

)
((θ(IF (x)(α, β))k + 1)m − 1

.

In the following, we derive the quantiles and moments of BMEPS distributions,

alongside elucidating the probability density function of the ith order statistic.

3. Statistical properties

In this section, we propose some of the basic statistical properties of the BMEP. For

example, we provide quantiles and order statistic, Renyi and Shannon entropies,

as well as moments. The moment generating function, residual life function, prob-

ability weighted moments, mean, deviations and Bonferroni and Lorenz curves are

also provided for the BMEP.

3.1 Quantiles, moments and order statistics

The quantiles of a distribution can be used in data generation from this distri-
bution. The quantile xq of the BMEPS(α, β, a, b, k, θ) is the real solution of the
following equation:

Bk,θ(
1− e−βxq

Aα,β,q
)(a−1)(

αe−βxq

Aα,β,q
)(b−1)(

αβe−βxq

(Aα,β,q)2
)(IF (xq)(α, β))

k−1C
′(
θ
(
IF (xq)(α, β))

k
)

C(θ)
= 0

The above equation has no closed form solution in xq, so we have to use a numerical

technique such as the Newton-Raphson method to get the quantile.

The PDF fi:n of the ith order statistic for a random sample X1, X2, ..., Xn from

the BMEPS distribution is given by

fi:n(x) =
1

B(i, n− i+ 1)
f(x)F (x)

i−1
[1− F (x)]

n−i

=
1

B(i, n− i+ 1)

n−i∑
j=0

(
n− i
j

)
(−1)

j

[
C(θ

(
IF (x)(α, β)

)k
)

C(θ)

]j+i−1
and the CDF is

Fi:n(x) =

n∑
k=i

(
n

k

)
F (x)

k
[1− F (x)]

n−k

=

n∑
k=i

n−k∑
j=0

(
n− k
j

)(
n

k

)
(−1)

j

[
C(θ

(
IF (x)(α, β)

)k
)

C(θ)

]j+k
.

Carrasco et al. (2008) obtained an infinite representation for the rth moment of the

BME(α, β, a, b, k) distribution. If Y has the BME(α, β, a, b, k), the rth moment
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of Y say νr, is given as follows

νr[α, β, a, b, k] =

∞∑
j=0

∞∑
i1,...,ir=1

wj
Ai1,...,irΓ(Sr2 )

(α(j + b))
Sr

(3.3)

where Ai1,...,ir = ai1 ...air , Sr = ai1 + ...+ air ,

wj =
(−1)jΓ(a)

B(a, b)Γ(a− j)(b+ j)j!

and

ai =
(−1)

i+1
ii−2

(i− 1)!
.

Let Yi:n be the ith order statistic of a random sample from the BME distribution.

The rth moment of BMEPS(α, β, a, b, k, θ), is given as follows

µr = E(Xr) =

∞∑
n=1

P (N = n)E(Y r(n))

=

∞∑
n=1

anθ
n

C(θ)
n

∞∑
j=0

(−1)jΓ(a)

B(a, b)Γ(a− j)(b+ j)j!

∞∑
i1,...,ir=1

Ai1,...,irΓ(Sr2 )

(α(j + b))
Sr

Based on the results given in (3.3), the measures of skewness and kurtosis of the

BMEP(α, a, b, k, θ) can be obtained according to the following relations, respec-

tively,

Skewness =
µ3 − 3µ1µ2 + 2µ1

3

(µ2 − µ1)
3
2

,

Kurtosis =
µ4 − 4µ3µ1 + 6µ1

2µ2 − 3µ1
4

(µ2 − µ1)
2 .

To illustrate the behavior of the skewness and kurtosis when θ varies, Figure 4

presents the Galton’s skewness Johnson et al. (1995) and Moors’ kurtosis Moors

(1988) as functions of θ for selected values of α, β, a, b and k.

3.2 Mean deviations

The amount of scatter in a population can be measured by the totality of devia-

tions from the mean and median. The mean deviation from the mean is a robust

statistic, being more resilient to outliers in a data set than the standard deviation.

For a random variable X with PDF f(x), CDF F (x), mean µ and median M , the

deviation from the mean and the mean deviation from the median are defined by

δ1(x) =

∫ ∞
0

| x− µ | f(x)dx = 2µF (µ)− 2I(µ)
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Figure 4: The effect of θ on the Galton’s skewness and Moors’ kurtosis for different

values of α, β, a, b and k.

and

δ2(x) =

∫ ∞
0

| x−M | f(x)dx = 2MF (M)−M + µ− 2I(M)

respectively, where

I(a) =

∫ a∗

0

xf(x)dx.

4. Estimation and inference

Standard statistical techniques such as the method of maximum likelihood can

always be used for parametric estimation. The likelihood equations, given the

complete or censored failure data set, can be derived and solved.

4.1 The Maximum Likelihood Estimators

Parameter estimation is usually a difficult problem, specially for a six parameter

BMEPS distribution. Methods like the maximum likelihood estimation will not

yield a closed form solution. Different methods can be used to estimate the model

parameters. Among these methods, the Maximum Likelihood Estimation method

is the most commonly used method for model estimation. In this subsection, we

use the maximum likelihood procedure to derive the point and interval estimates
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of the parameters.

L = n ln(k) + n ln(θ) + n ln(
Γ(a+ b)

Γ(a)Γ(b)
) + (a− 1)

n∑
i=1

ln(
1− e−βxi

1− (1− α)e−βxi
)

+(b− 1)

n∑
i=1

ln(
αe−βxi

1− (1− α)e−βxi
) +

n∑
i=1

ln(
αβe−βxi

(1− (1− α)e−βxi)2
)

+(k − 1) ln(IF (x)(α, β)) + n ln
(
C
′
(θ(IF (x)(α, β))k)

)
− ln(C(θ))

Calculating the first partial derivatives of L with respect to α, β, a, b, k, θ and

equating each to zero.

To find out the maximum likelihood estimators of α, β, a, b, k, θ, we have to solve

the system of nonlinear equations with respect to α, β, a, b, k and θ. As it seems,

this system has no closed form solution in α, β, a, b, k, θ. Then, we have to use a

numerical technique method, such as the Newton-Raphson method to obtain the

solution.

4.2 Asymptotic Confidence Bounds

The approximate confidence intervals of the parameters based on the asymptotic

distributions of the MLE of the parameters α, β, a, b, k, θ are derived in this sub-

section. Then the observed information matrix is obtained as

I = −



∂2L
∂α2

∂2L
∂α∂β

∂2L
∂α∂a

∂2L
∂α∂b

∂2L
∂α∂k

∂2L
∂α∂θ

∂2L
∂β∂α

∂2L
∂β2

∂2L
∂β∂a

∂2L
∂β∂b

∂2L
∂β∂k

∂2L
∂β∂θ

∂2L
∂a∂α

∂2L
∂a∂β

∂2L
∂a2

∂2L
∂a∂b

∂2L
∂a∂k

∂2L
∂a∂θ

∂2L
∂b∂α

∂2L
∂b∂β

∂2L
∂b∂a

∂2L
∂b2

∂2L
∂b∂k

∂2L
∂b∂θ

∂2L
∂k∂α

∂2L
∂k∂β

∂2L
∂k∂a

∂2L
∂k∂b

∂2L
∂k2

∂2L
∂k∂θ

∂2L
∂θ∂α

∂2L
∂θ∂β

∂2L
∂θ∂a

∂2L
∂θ∂b

∂2L
∂θ∂k

∂2L
∂θ2


,

The variance-covariance matrix may be approximated as Σ = I−1. Since Σ

involves the parameters α, β, a, b, k and θ, we replace the parameters by the corre-

sponding MLE’s in order to obtain an estimate of Σ, which is denoted by Σ̂ = Î−1,

where Îij = Iij with (α̂, β̂, â, b̂, k̂, θ̂) substituting (α, β, a, b, k, θ). By using this ap-

proximation, approximate 100(1 − δ)% confidence intervals for α, β, a, b, k, θ are

determined, respectively, as

α̂± z δ
2

√
Σ̂11 , β̂ ± z δ

2

√
Σ̂22 , â± z δ

2

√
Σ̂33 , b̂± z δ

2

√
Σ̂44,

k̂ ± z δ
2

√
Σ̂55 and θ̂ ± z δ

2

√
Σ̂66

where zδ is the upper δ−th percentile of the standard normal distribution. We shall

now move to hypothesis testing inference on the parameters that index the BMEPS

law. Let ∆ = [α, β, a, b, k, θ], ∆1 = [α, β, a, b, k] and ∆2 = [θ] so ∆ = [∆1,∆2].
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Suppose we wish to test the hypothesis H0 : ∆2 = ∆2◦, against the alternative

hypothesis H1 : ∆2 6= ∆2◦. To that end, we can use the likelihood ratio (LR)

test whose test statistic is given by G = 2[`(∆̂) − `(∆̃)], where ∆̂ = [∆̂1, ∆̂2]

and ∆̃ = [∆̃1,∆2◦] denote the MLEs of ∆ under the null and the alternative

hypotheses, respectively. Under the null hypothesis, G is asymptotically (as n→
∞) distributed as χk

2, where k is the dimension of the vector ∆2 of parameters

of interest. We reject the null hypothesis at the nominal level δ (0 < δ < 1) if

G > χ2
k,1−δ, where χ2

k,1−δ is the 1 − δ quantile of χ2
k. Using this test, one

can select between a BMEPS and an BME model, which can be done by testing

H0 : ∆2 ↓0.

5. Application

From the current study, it is hoped that the BMEPS distribution can be used more

widely in both theoretical and applied contexts. In this section, we analyze a real

data set to demonstrate the performance of the BMEPS distribution in practice.

The data set is a sample of 50 components taken from Aarset (1987). These data

were also analyzed in Choulakian and Stephens (2001).

We illustrate the superiority of the new distribution compared to some of its sub-

models. We then perform the goodness of fit analysis of the BMEL distribution and

sub-models, which allows their evaluation relative to each other and to the more

general BMEL model. However, the lower values of AIC and BIC for the BMEL

and other distributions indicate that these models might be chosen as the best

fits for the data. In addition to comparing the models, we use two other criteria.

First, we consider the LR statistic, and next, we consider formal goodness-of-fit

tests. The required numerical evaluations are implemented using R software.

We consider the widely used data from Aarset (1987), also reported in Mudholkar

Table 2: Lifetimes of 50 devices
0.1 0.2 1 1 1 1 1 2 3 6

7 11 12 18 18 18 18 18 21 32

36 40 45 46 47 50 55 60 63 63

67 67 67 67 72 75 79 82 82 83

84 84 84 85 85 85 85 85 86 86

and Srivastava (1993), and Wang (2000), on lifetimes of 50 components that pos-

sess a bathtub-shaped failure rate property. The data contain the times to failure

of 50 devices put on a life test at time 0, from Aarset (1987) as in Table 2. Also,

Table 3 shows descriptive statistics of the Aarset data, and Figure 5 shows the
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Table 3: Descriptive values of Aarset data

Min 1st.Qu Median Mean 3rd.Qu Max Skewness Kurtosis

0.10 13.50 48.50 45.69 81.25 86.00 -0.14 1.41

Histogram of Aarset.data
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Figure 5: Plots of density function, cumulative distribution function and hazard

function.

histogram and the approximation of the density curve of the data.

Table 4 presents the maximum likelihood estimates (MLEs) of the parameters for

each model, accompanied by the Akaike Information Criterion (AIC), Bayesian In-

formation Criterion (BIC), and the value of −2 log(L). These statistical measures

are crucial for model comparison, where lower values typically indicate a better

fit to the data. Among the fitted models, the BMEL distribution stands out with

the lowest AIC, BIC, and −2 log(L) values (509.080, 520.560, and 497.080, re-

spectively). These results suggest that the BMEL distribution provides the most

parsimonious fit to the data, balancing model complexity with goodness of fit. No-

tably, the BMEG distribution, with slightly higher AIC and BIC values (494.500

and 505.980), also performs well, indicating that it captures the underlying data

structure effectively.

The substantial differences in AIC and BIC values between the best models and

others, such as the BMEP distribution (AIC = 5709.970, BIC = 5721.440), further

reinforce the BMEL distribution’s superiority in this context. The use of these cri-

teria allows for a more nuanced model selection process, where both the goodness

of fit and the number of estimated parameters are considered. Moreover, the con-

sistency between AIC and BIC rankings supports the robustness of the BMEL

distribution as the best model for the Aarset data. However, it is important to
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Table 4: MLEs of the model parameters, and the measures of AIC ,BIC and −2log(L)

for Aarset data (values of best fitted model are highlighted).

Estimates Statistic

Distribution α̂ β̂ â b̂ k̂ θ̂ AIC BIC −2log(L)

BMEP 0.016 0.596 7.000 1.999 6.000 0.000 5709.970 5721.440 5697.970

BMEG 1.005 0.004 0.127 3.299 5.398 0.000 494.500 505.980 482.500

BMEL 1.948 0.238 2.868 0.055 0.365 0.000 509.080 520.560 497.080

MEP 3.693 0.030 0.583 0.000 477.260 484.910 469.260

MEG 29.492 0.050 0.421 0.00 466.420 474.070 458.420

MEL 4.027 0.0310 0.598 0.000 476.530 484.180 468.530

EP 0.015 0.000 0.551 489.710 495.440 483.710

EG 0.015 0.000 0.565 489.220 494.960 483.220

EL 0.017 0.000 0.688 486.500 492.230 480.500

BME 0.001 3.225 0.500 0.007 1.701 2.621 478.200 487.760 468.200

ME 0.033 0.022 483.110 486.930 479.110

E 0.016 0.596 7.000 484.180 486.090 482.180

note that while the BMEL model outperforms others based on these criteria, the

BMEG and MEP distributions also demonstrate strong potential, depending on

the specific requirements of the analysis or application. The results underline the

importance of considering multiple models and criteria when performing survival

analysis, particularly in contexts where the underlying data may exhibit complex

behavior, such as varying failure rates or multimodal distributions. In general, the

statistical evidence strongly favors the BMEL distribution, but the performance of

models like BMEG and MEP suggests they may also be viable in similar contexts.

On the other hand, we can compute the maximum values of the unrestricted and

restricted log-likelihoods to derive the LR statistics, allowing us to test sub-models

of the BMEPS distribution. For instance, the test between the BME distribution

and the BMEL model examines H0 : θ ↓0 versus H1 : θ 6↓0 (θ > 0). Typically, we

define Θ = (Θ1,Θ2), partitioning the BMEPS distribution’s parameter space into

subsets where Θ1 denotes parameters of interest and Θ2 signifies the remaining

parameters. Using Θ̂ and Θ̃ as the maximum likelihood estimates (MLEs) under

alternative and null hypotheses respectively, with Θ0
1 as a specified parameter vec-

tor, we compute the LR statistic for testing the null hypothesis H0 : Θ1 = Θ0
1

against the alternative H1 : Θ1 6= Θ0
1.

Consequently, under the null hypothesis of θ ↓0, the computed test statistic is LR-

statistics = −28.883. Given that the p-value (1.000) exceeds 1%, we confidently

fail to reject our null hypothesis, implying that the parameter θ ↓0. This suggests

that the BME distribution adequately models the device failure data. Table 5

presents the values of several more LR statistics for reference.
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Table 5: LR tests for Aarset data.

Model LR-statistics p− value Model LR statistics p− value
BMEP versus MEP -528.705 1.000 BMEG versus ME -3.396 1.000

BMEP versus EP -524.264 1.000 BMEG versus E -0.325 0.71

BMEP versus BME -529.769 1.000 BMEL versus MEL -28.555 1.000

BMEP versus ME -5218.862 1.000 BMEL versus EL -16.585 1.000

BMEP versus E -5215.790 1.000 BMEL versus BME -28.883 1.000

BMEG versus MEG -24.083 1.000 BMEL versus ME -17.975 1.000

BMEG versus EG 0.720 0.869 BMEL versus E -14.904 1.000

BMEG versus BME -14.303 1.000

Table 6: Goodness-of-fit tests for Aarset data.

Statistic Statistic

Distribution AD∗ W ∗ K-S p− value Distribution AD∗ W ∗ K − S p− value
BMEP 7.341 14.391 0.901 0.000 EP 4.143 0.802 0.235 0.008

BMEG 3.391 0.623 0.212 0.022 EG 3.981 0.767 0.231 0.009

BMEL 5.478 0.967 0.261 0.002 EL 3.407 0.625 0.214 0.021

MEP 2.539 0.437 0.182 0.073 BME 101.597 7.498 0.760 0.000

MEG 1.599 0.238 0.140 0.28 ME 4.117 0.437 0.163 0.140

MEL 2.459 0.411 0.177 0.085 E 3.708 0.524 0.191 0.052

Next, we examine the Cramer-von Mises (W ∗) and Anderson-Darling (A∗) statis-

tics, where smaller values of these statistics generally indicate a better fit to the

data. Detailed descriptions of the statistics W ∗ and A∗ can be found in Chen

and Balakrishnan (1995). Table 6 provides the goodness-of-fit test results for the

Aarset data, including the Anderson-Darling (A∗) and Cramer-von Mises (W ∗)

statistics, along with the Kolmogorov-Smirnov (K − S) test statistic and corre-

sponding p-values for each model. These statistics are crucial in assessing how well

the fitted distributions capture the underlying data characteristics, where smaller

values generally suggest a better fit. Among the models considered, the MEG dis-

tribution exhibits the lowest A∗ and W ∗ statistics (1.599 and 0.238, respectively),

indicating a superior fit to the data compared to other distributions. The K-S

statistic for the MEG model (0.140) further supports its adequacy, with a high

p-value of 0.28, suggesting no significant deviation from the observed data.

In contrast, the BMEP distribution, despite its flexibility, shows much higher

A∗ and W ∗ values (7.341 and 14.391, respectively), indicating a poorer fit. The

corresponding K − S statistic (0.901) and p-value (0.000) reinforce this, signaling

a significant departure from the observed data distribution. The BMEL distribu-

tion, while not performing as well as the MEG model, still provides a reasonable

fit with A∗ and W ∗ values of 5.478 and 0.967, respectively. Its K-S statistic (0.261)

and p-value (0.002) indicate some level of deviation, but it is less pronounced than
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Figure 6: Left panels: empirical TTT-plot. Right panels: Estimated hazard rate func-

tion. Bottom panels: Estimated survival functions for three fitted models and the em-

pirical survival function. All for Aarset data.

in the BMEP model.

Also, the MEG distribution emerges as the most suitable model based on these

goodness-of-fit statistics, providing the best balance between simplicity and ac-

curacy in capturing the underlying data structure. This is particularly evident

when comparing the MEG distribution to the more complex BMEP and BMEL

distributions, which, despite their theoretical flexibility, do not perform as well in

practice. The results underline the importance of selecting a model that not only

theoretically accommodates diverse failure rate patterns but also empirically fits

the data effectively.

Overall, while models like BMEL offer theoretical advantages, the empirical evi-

dence strongly favors the MEG distribution for the Aarset data. This emphasizes

the need for a careful balance between model complexity and goodness-of-fit when

selecting the most appropriate distribution for survival analysis.

Figure 6 presents a comprehensive visual analysis of the Aarset data, featuring

the empirical Total Time on Test (TTT) plot, estimated hazard rate functions,

survival functions, and the Kaplan–Meier curve for the three fitted models. In

the left panels, the empirical TTT-plot offers insight into the underlying failure

rate pattern of the data. The estimated hazard rate functions, shown in the right

panels, reveal the behavior of each model in capturing the risk over time. Notably,
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the BMEG distribution aligns closely with the empirical hazard rate, indicating

its capability to model the failure process effectively.

The bottom panels display the estimated survival functions alongside the empiri-

cal survival function derived from the Kaplan–Meier estimator. Here, the BMEG

distribution again demonstrates its superiority, as its estimated survival function

closely follows the empirical curve, suggesting an accurate representation of the

data’s survival characteristics. Overall, the graphical evidence reinforces the earlier

statistical findings, highlighting the BMEG distribution as the most appropriate

model for the Aarset data. Its strong performance across the empirical TTT-plot,

hazard rate estimation, and survival function fitting underscores its practical util-

ity in survival analysis, making it a robust choice for modeling lifetime data in this

context.

Discussion and Resuls

We introduced the Beta Modified Exponential Power Series (BMEPS) Distribu-

tion, a six-parameter lifetime model that amalgamates features from the beta mod-

ified Exponential and Power Series distributions. This BMEPS model, explored in

our study, demonstrated remarkable adaptability, accommodating various types

of failure data, including the potential for a bathtub-shaped failure rate function.

Our thorough mathematical treatment covered order statistics, providing explicit

expressions for the density function and moments. We examined diverse properties

of the BMEPS distribution, investigated quantiles and moments, and employed the

EM-algorithm for maximum likelihood estimation. By fitting the BMEPS model

to real-world data, we demonstrated its practical application. Envisioning broader

utility in survival analysis, life distributions, and among reliability engineers, we

anticipated widespread interest and adoption of our extended model.
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