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1. Introduction

Traditional methods of meta-analysis attempt to combine results of different stud-

ies in order to obtain a single summarized ’effect size’. So that the observed effect

in each study is an estimate of the true effect in that study. As Thompson (1994)

had mentioned, clinical and methodological diversity among the studies included

in a meta-analysis necessarily leads to statistical heterogeneity.

Statistical heterogeneity refers to the situation where true effects in each study are

not identical. This could be because of overall health level, age, genetic makeup,

the quality of the health care they provide, or even the sample size.

In case of the existence of substantial heterogeneity between the studies, the statis-

tician must explore possible causes of it. See Thompson (1994); Greenland (1987);

Berlin and Antman (1994) and Thompson and Sharp (1999) for more details. In

the context of meta-analysis, this could be done by covariates on the study level

that could ’explain’ the differences between the studies. The term meta-regression

to describe such analysis goes back to papers by Bashore et al. (1989) and Berlin

and Antman (1994) among others. The potential scientific value of explorations

of sources of heterogeneity has been emphasized in the past by authors like Rubin

(1990) and Thompson (1994), so meta-regression is now becoming one of the most

celebrated techniques. Note that the term meta-regression is used to indicate the

use of the study-level covariates, in contrast with regression analysis, that is pos-

sible when individual data on outcomes and covariates are available (Thompson

and Higgins (2002)).

Thompson (1994) argued that heterogeneity is not always a problem but also

can be regarded as an asset. It allows scientifically and clinically more useful ap-

proaches to investigate how potential sources of heterogeneity influence the overall

treatment effect. For example, the treatment effect could be higher in trials that

included a large number of old males.

In meta-regression, the trial characteristics are put as covariates in a regression

analysis with the estimated treatment effect of the trial as the dependent variable.

The statistical purpose of meta-regression is to investigate the extent that covari-

ates can explain the between-trial component of the variance.

In other words, meta-regression can be used to investigate whether particular co-

variates (potential ’effect modifiers’) explain any of the heterogeneity of treatment

effects between studies (Thompson and Higgins (2002)) or to explain the study-

to-study variation found in empirical literature (Stanley (2001)).

Here we should note that the independent variables in a meta-regression are of two

kinds, properties of such studies or average properties of the units studied. Exam-
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ples of variables of the first kind are the country where the study has been carried

out, study design, etc. Examples of variables of the second kind are the average age

of patients or the percentage of males. Note that as Greenland (1987) and Thomp-

son and Higgins (2002) had mentioned, the second kind is more problematic and

known as aggregation or ecologic bias. Another problem is that aggregated values

tend to exhibit little between-study variation, thus providing minimal information

across the potential range of the factors (Schmid (1999)).

In the frequentist settings, various statistical methods for meta-regression have

been published. For example, fixed effect meta-regression was described originally

by Greenland (1987), a random effects model by Berkey et al. (1995), and a

fuller comparison of available methods made by Thompson and Sharp (1999).

Note that, we will just use one covariate because, as Higgins and Thompson

(2004) mentioned, explorations of heterogeneity are noted to be potentially mis-

leading. It happens because the number of studies in a meta-analysis is usually

quite small, so there is a great danger of overfitting. Hence, there is only room for

a few explanatory variables in a meta-regression, whereas many characteristics of

the studies may be identified as potential causes of heterogeneity.

One way to allow for the imprecision, however, is to adopt a Bayesian approach,

which is usually used with non-informative priors (Smith et al. (1995)). Although

this is preferable in principle, especially when the number of trials is small or when

the between-trial variance is estimated as zero, the resulting widening of the con-

fidence intervals is relatively slight in most practical examples. We should note

that the choice of ’non-informative’ priors can also be somewhat problematic in a

Bayesian analysis (Natarajan and Kass (2000)).

However, in recent years there has been an increasing trend in Bayesian nonpara-

metric and semiparametric models. Chung and Dunson (2011) believe that most

of these are because of simple and efficient methods for computing posteriors in a

mixture of Dirichlet processes. Related approaches for semiparametric models in

the meta-analysis have been discussed by Muller et al. (2004); Burr and Doss

(2005) and Ohlsen et al. (2007). Dominici and Parmigiani (2001) and Carota

and Parmigiani (2002) have also focused on semiparametric Bayesian approaches

for count data, but not in the same settings.

Jo et al. (2021) proposed Bayesian semiparametric mixed effects models with

measurement error to analyze the literature data collected from multiple studies

in a meta-analytic framework. In their proposed model, a nonlinear association

between exposure and response is described by a Gaussian process with shape re-

strictions. study-specific random effects have been modeled to have either normal
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or unknown distributions with Dirichlet process mixture priors.

In the previous Bayesian models like Ohlsen et al. (2007); Lambert et al. (2002);

Warn et al. (2002) and Jo et al. (2021), most of the attention is paid to inter-

cept, and regressor coefficient(s) is not the primary concern. So, in this paper, we

will consider them simultaneously in semiparametric settings. Considering these

coefficients, simultaneously could improve results and make it possible to test the

equality of probabilities, which is impossible in the previous models. These results

would be shown with simulation.

The remainder of this paper is organized as follows. In section 2, we will introduce

the data structure and our proposal model. Prior distribution will be specified

in section 3. Finally, in section 4, we perform a simulation to check the model’s

efficiency and present an illustrating example.

2. Data Structure and Model

In the meta-analysis literature, we usually interface with the situation that we have

m center that are designed for the comparison of two situations. This situation

frequently arises, especially in medical studies with early works in meta-analysis

involving pooling of effect-size estimates or combining of p-values (Tippett (1931);

Pearson (1933) and Fisher (1938)).

Let p1i and p2i be the probabilities of success for control and treatment groups of

two drugs in ith center, and we want to compare their remedy probabilities. In

other words, for subject j (j = 1, 2), let y
(j)
i denote a count outcome from ith

center. Now, it can be easily written

yji ∼Bin(nji , p
j
i ) j = 1, 2. (2.1)

A widespread random effect model in these settings was introduced by DerSi-

monian and Laird (1986). Let D = (D1, D2, · · · , Dm), be independent random

variables from

Di|ψi
ind∼ N(ψi, σ

2
i ) (2.2)

and

ψi
iid∼ N(µ, τ2) (2.3)

where µ and τ are unknown parameters. σ2
i is unknown also, but would be esti-

mated along with the data and, so we deal with it from now on.

However, as mentioned before, sometimes there is substantial heterogeneity be-

tween the studies, and the statistican must explore its possible causes; this can be
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done by covariates on the study level, which is called ”meta-regression”.

Suppose that our goal from the model (2.1) is testing the following hypothesis:

H0 : p1 = p2 (2.4)

Now, to interpret (2.4) and the relation between their discrete response variable

with some explanatory variables, we describe their associations using log odds

ratios. Then, since

Di = log
p1i
p2i

(2.5)

can be considered to have a normal distribution. By using it, we can rewrite (2.4)

as Di = 0 we can consider Dis instead of p and, suppose that

Di|ηi, βi
ind∼ N(ηi + βiXi, σ

2
i ) (2.6)

where Xi and βi are the design matrix consisting of values of explanatory variables

in ith center and their coefficients, respectively. So, from (2.4), the null hypothesis

can be written as

H0 : ηi + βiXi = 0 (2.7)

Assuming a prior distribution for the vector β and changing the variable from β

to P, we can obtain the prior distribution of P.

As Chung and Dunson (2011) and Griffin and Steel (2006) mentioned, the Dirich-

let process (Ferguson (1973)) has been an overwhelming mechanism used as the

prior for the unknown distribution in the model specification, especially in the

case of using from multinomial distributions.

Now, by using the following definitions, we want to employ our idea to estimate

the posterior distribution and its parameters in the Bayesian semiparametric meta-

regression model.

2.1 The Dirichlet process

Given a positive real α and a continuous distribution F0, which is the baseline

distribution around which F is centered, the Dirichlet process (DP) is a model

for a random distribution function F . In practice, suppose we break the real line

into k disjoint classes (−∞, x1), [x1, x2), ..., [xk−2, xk−1), [xk−1,∞) where −∞ =

x0 < x2 < ... < xk−1 < xk = ∞, and that p1 = F (x1), p2 = F (x2) − F (x1), p3 =

F (x3) − F (x2), ..., pk−1 = F (xk−1) − F (xk−2) and pk = 1 − F (xk−1) are the

probabilities of lying in the intervals, and p0,k−1 = F0(xk−1) − F0(xk−2) are the
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corresponding probabilities for the baseline distribution. Then the p’s have a

Dirichlet distribution

(p1, p2, · · · , pk)∼Dir(αp0,1, αp0,2, ..., αp0,k)

where α is a parameter that measures the variability of F around F0, so that high

values of α cause F to be close to F0.

The constructive definition of the DP (Sethuraman (1994)) shows how to simulate

random distribution functions from a DP. We first generate a random sequence

of draws θ1, θ2, · · · from F0 and a random sequence of draws ζ1, ζ2, ... from a

Beta(1, α), so that p(ζi) = αζα−1i and E(ζi) = (1+α)−1. The random distribution

function F (.) assigns probability p1 = ζ1 to the point θ1, p2 = (1 − ζ1)ζ2 to θ2,

p3 = (1 − ζ1)(1 − ζ2)ζ3 to θ3 and so on. The generation of the masses pk can be

viewed as a stick-breaking prior (Ishwaran and James (2001)), in that one can

think of ζ1 being broken off a stick of length 1 leaving a remainder q1 = (1− ζ1),

and then a proportion ζ2 being broken off leaving q2 = (1− ζ1)(1− ζ2) and so on,

hence:

pk = ζk
∏
j<k

(1− ζj) = ζkqk−1. (2.8)

The fraction 1− ζi left after each break has the expectation α/(1 +α), and hence

after N − 1 breaks, there is expected to be a proportion

E

[
1−

N−1∑
i=1

pi

]
= E [qN−1] = E

[
N−1∏
i=1

(1− ζi)

]
=

(
α

α+ 1

)N−1
(2.9)

left to assign.

Thus using the constructive definition, we can show the realizations of a DP as infi-

nite mixtures of point masses (Muller and Quintana (2004)), so that the resulting

density function is of the form

f(.) =

∞∑
k=1

pkIθk θk ∼F0

where Iθk represents an indicator function at θk and f(.) is the density function

of F .

A natural extension to the DP, is to extend it to form a mixture of continuous

distributions, which is as follows,

f(.) =

∞∑
k=1

pkh(.|θk) θk ∼F0
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where h(.|θk) is a density function of a continuous random variable. Which is often

referred to as a mixture of DP model, and its original application is with normal

distributions to form a Bayesian approach to kernel density estimation (Escobar

and West (1995)).

In this paper, we want to use the DP or a mixture of DPs to provide a semipara-

metric random-effects distribution and use it as the prior for regressor coefficient.

Previous work in this area has focused on extending existing computational meth-

ods (Escobar and West (1995)) to hierarchical models: Bush and MacEachern

(1996) considered using the standard DP to form a prior for the random-effects dis-

tribution in a normal−normal hierarchical model; Kleinman and Ibrahim (1998)

had extended this idea to generalized linear mixed models, while a mixture of DPs

has also been applied in random effects ANOVA (Muller and Rosner (1997); De

Iorio et al. (2004)). Burr and Doss (2005) and Burr et al. (2003) used a com-

bination of two DP to estimate the median treatment effect in a random effects

meta-analysis. Ohlsen et al. (2007), also used the same settings as here but only

for the constant, and did not regard the coefficient.

All these approaches except Ohlsen et al. (2007) suffer from fairly severe compu-

tational complexity and/or restrictions to normal likelihoods. Therefore as Ohlsen

et al. (2007), we turn to a computationally straightforward approximation.

2.2 The truncated Dirichlet process

In order to produce practical MCMC algorithms, recent research has focussed on

using the constructive definition of the DP (Ishwaran and James (2001); Ishwaran

(2000); Ishwaran and Zarepour (2000); Congdon (2001) and Gelfand and Kottas

(2002)). One way to do this is to approximate the full process by truncating the

mixture at a maximum number of components N , so that

∞∑
k=1

pkIθk ≈
N∑
k=1

pkIθk . (2.10)

Such a truncated DP is denoted by F ∼ TDP (α, F0, N). A restriction is placed

on the final weight, pN = 1−
N∑
k=1

pk , so that a proper distribution is formed. This

idea could also be used to model a mixture of DP

∞∑
k=1

pkh(.|θk) ≈
N∑
k=1

pkh(.|θk). (2.11)
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The advantage of the mixture model, is relaxing the assumption of a discrete dis-

tribution function.

Note that as Ohlsen et al. (2007) had mentioned, in addition to providing a

flexible distribution for the random-effects, there is the added advantage of an in-

built cluster algorithm which could be used to detect groups of units with unusual

results.

2.3 Specifying N

The parameter N , specifies the number of mass points used in the approximation

of the DP, so the value of N must be closely related to the value of α, which controls

the amount of clustering between the center effects. Note that although models

with smaller numbers of mass points are easier to compute, the quality of the

approximation would be reduced concerning the full DP. A pragmatic approach

to this problem is to set N so that the amount of probability assigned to the final

mass point pN = 1−
N∑
k=1

pk is expected to be small, so that

E[pN ] ≈ ε.

Using equation (2.9) Ohlsen et al. (2007) show that

N ≈ 1− α log(ε).

A more formal approach to selecting the N has been developed in a series of papers

like Ishwaran and James (2001); Ishwaran (2000) and Ishwaran and James (2002).

3. PRIOR SPECIFICATION

3.1 The form of F0

As Ohlsen et al. (2007), we assume a normal distribution for the baseline F0 with

unknown parameters as a natural extension of the standard normal random-effects

model, so that

θk ∼ N
(
µF0

, σ2
F0

)
k = 1, · · · , N. (3.12)

The priors for µF0
and σF0

may be chosen to be fairly weak, in the sense that they

are flat well, beyond the range of values that are supported by the data, such as

µF0
∼ N(0, 102), σF0

∼ U(0, 10).
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3.2 Specifying α

Assuming a normal baseline distribution has a useful interpretation in the context

of hospital comparisons. As α → 0, all of the center effects γi are forced into a

single common cluster, which can be thought of as support for the common unit

effect assumption, and as α → ∞ the DP forces each of the unit effects into a

separate cluster which is equivalent to a normal random-effects assumption. Thus

support for small values of α shows the common mean model might be reasonable

for the data; support for large values supports the normal random-effects model,

while intermediate support suggests a flexible alternative is required.

Ishwaran (2000) suggests that a value of α = 3 can be considered a ”large” value,

but if the true distribution was normal, there would be support for much larger

values of α. The relationship between α and N , derived in Section 2.3, shows that

if α = 10 then the random effects distribution might be modeled with around 52

mass points (N = 52). So we will use a Poisson prior with rate 52 forN .

If we wish to choose α with respect to the data, the problem remains of specifying

its prior distribution. Based on the observations above, we have adopted a uniform

prior for α:

α ∼ U(lb, ub), lb ∼ U(0, 1), ub ∼ U(5, 10).

Erkanli et al. (2006) derive informative priors for α. Their results suggest that

using N = 52 points should be conservative, and we expect many unoccupied

clusters. Hence we will use a Poisson prior with a rate equal to 52 for N .

Note that a possible problem with using the DP was the assumption of a

discrete random effects distribution, which usually solve using a mixture of DP. It

is also possible to extend the model to allow a flexible continuous random-effects

distribution based on a mixture of normals with a large number of components.

Since the extension to this model is straightforward, we don’t bring it here.

We should note that depending on the priors that have been used in the hierarchical

model, posteriors can have closed forms, but usually, there isn’t a closed form.

Hence, we have to use methods like the Metropolis-Hastings algorithm. So, we do

not consider posteriors here and use WinBUGS to handle computations based on

Markov chain Monte Carlo methods.
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4. AN EXAMPLE: SINGLE-DOSE IBUPROFEN

FOR POST-OPERATIVE PAIN

We apply the proposed model to the data from a Cochrane Review investigating

the effectiveness of single-dose ibuprofen in reducing post-operative pain (Collins

et al. (2000)), which was also reconsidered by Warn et al. (2002). Ibuprofen is

one of a class of non-steroidal anti-inflammatory (NSAID) analgesics, and it is im-

portant to know which drug and dose should be recommended for post-operative

pain relief. The review comprises 46 small trials of single-dose ibuprofen against

placebo with binomial outcome data. The dose used in different trials ranges from

50mg to 800mg. A measure of at least 50 percent pain relief in the 4-6 hours after

administration of the dose is used as the common descriptor of analgesic efficacy.

Since the length of follow-up is the same across trials, it is appropriate to consider

the patient’s risk of experiencing pain relief. The data from the trials are given in

table 1.

As in Warn et al. (2002) expressed, however, not surprisingly, there is consider-

able evidence that ibuprofen improves pain relief, but the heterogeneity of its effect

is evident on all three scales. So by using our proposal model, we will consider

all the trials as we describe how to investigate the relationship between treatment

effect and dose.

Note that since we have 46 centers and they are not small, we can use noninfor-

mative priors here, but as Ohlsen et al. (2007) mentioned, for small data sets, we

should use parametric priors based on previous results. Also, we should insinuate

that we apply the proposed model by Ohlsen et al. (2007) to this data set in order

to compare two models, but we encounter an error. It seems that that model is

not applicable to any data set. To run the model, we use a burn-in period with

a length of 10,000 times and then simulate the chain 50,000 times and, based on

these iterations, earn the results, which are presented in figures 1-4 briefly.

In figure 1, we bring the density function of α, mean and variance of random

effect, and related statistics to them as well as those of K which is the number of

clusters. As we see in this figure, α is estimated as 4.008 and has a skewed dis-

tribution, which is not in agreement with our proposed uniform prior, completely.

Note that it could be because the medium number of the data, and yet a uniform

distribution seems a reasonable prior. Random effect distribution does not have

any special form which confirms our semiparametric prior. Finally, K is estimated

as 46.

Figure 2 shows the distribution and statistics of η, intercept. Since the densities
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var.true sampl e: 50000

 -200.0     0.0   200.0   400.0

    0.0

   0.05

    0.1

   0.15

alpha sample: 50000

   -5.0     0.0     5.0    10.0

    0.0

   0.05

    0.1

   0.15

    0.2

poptrue sample: 50000

  -60.0   -40.0   -20.0     0.0

    0.0

   0.02

   0.04

   0.06

   0.08

 

node  mean  sd  MC error  2.5% median 97.5% 

alpha 4.008 2.185 0.009215                 0.5945 3.868 8.481 

poptrue -15.34 7.291 0.4654                 -27.99 -15.04 -1.839 

var.true 14.08 23.52 1.179                 0.002147 4.606 84.55 

K 46.0 0.0 4.472E-13 46.0 46.0 46.0 

Figure 1: Density and Statistics of α, K, Mean(potrue) and Variance of random

effect(var.true).
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eta[2] sample: 50000

   -0.2     0.0     0.2     0.4

    0.0

    2.0

    4.0

    6.0

eta[7] sample: 50000

   -0.2     0.0     0.2

    0.0

    2.5

    5.0

    7.5

   10.0

 

eta[18] sample: 50000

  -0.05     0.0    0.05     0.1    0.15

    0.0

    5.0

   10.0

   15.0

   20.0

eta[41] sample: 50000

  -0.05     0.0    0.05     0.1

    0.0

   10.0

   20.0

   30.0

 

 node  mean  sd  MCerror  node  mean  sd  MC rror 

eta[1] 0.3806 0.1674 0.009887   eta[24] 0.04567 0.0215 0.001266 

eta[2] 0.1895 0.07962 0.004726  eta[25] 0.03843 0.01997 0.00117 

eta[3] 0.1762 0.08327 0.004967  eta[26] 0.0424 0.02119 0.001266 

eta[4] 0.08296 0.0423 0.002499  eta[27] 0.04827 0.02075 0.001236 

eta[5] 0.09753 0.0419 0.002491  eta[28] 0.04187 0.02022 0.001185 

eta[6] 0.09404 0.0399 0.002369  eta[29] 0.0456 0.01974 0.001169 

eta[7] 0.09261 0.04248 0.002517  eta[30] 0.04224 0.0201 0.00118 

eta[8] 0.08702 0.04042 0.002358  eta[31] 0.04993 0.02039 0.001204 

eta[9] 0.08117 0.04228 0.002538  eta[32] 0.03932 0.02149 0.001279 

eta[10] 0.08689 0.04069 0.002388  eta[33] 0.04247 0.01997 0.001169 

eta[11] 0.08726 0.03998 0.002381  eta[34] 0.04448 0.02057 0.001214 

eta[12] 0.04579 0.02014 0.001193  eta[35] 0.0484 0.0214 0.00127 

eta[13] 0.04326 0.02093 0.001241  eta[36] 0.04183 0.02062 0.001216 

eta[14] 0.04117 0.02008 0.001174  eta[37] 0.04294 0.01997 0.001179 

eta[15] 0.04181 0.02103 0.00125  eta[38] 0.04187 0.02116 0.001248 

eta[16] 0.04463 0.02082 0.001227  eta[39] 0.04255 0.02009 0.001203 

eta[17] 0.04266 0.02089 0.001232  eta[40] 0.04508 0.02127 0.001248 

eta[18] 0.04463 0.02054 0.001216  eta[41] 0.04644 0.02061 0.001217 

eta[19] 0.04646 0.02029 0.001196  eta[42] 0.03957 0.02128 0.001254 

eta[20] 0.04865 0.02102 0.001224  eta[43] 0.0264 0.01373 8.107E-4 

eta[21] 0.04724 0.02032 0.001206  eta[44] 0.03328 0.01386 8.292E-4 

eta[22] 0.04929 0.02004 0.001176  eta[45] 0.02907 0.01378 8.076E-4 

eta[23] 0.05056 0.02009 0.001192  eta[46] 0.02555 0.01026 6.16E-4 

Figure 2: Density and Statistics of η
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of ηs were the same, we reported some of them. Using these quantities, we estimate

the common intercept as η = 0.0640 with an SD equal to 0.0293. Here we should

mention that based on computed confidence intervals which are not included here

and just plotted in figure 4, all of ηis are significant except η32 and η42. Hence,

we can conclude that intercept is significant in this example.

Figure 3 shows the same quantities for coefficients, βs. In this case, densities are

denser and confirm our semiparametric prior for them against using a parametric

one for intercepts. We just could accept the significance of the 22 coefficient. Also,

the common coefficient is estimated as −15.2878 with an sd equal to 8.1931. The

computed confidence intervals are plotted in figure 4. Based on them, the 95%

confidence interval of the common coefficient would be as (−30.48, 0.1923) and

based on it, we can conclude that in this case, the covariate is not significant.

Finally, note that since we accept the significance of intercept and insignificance

of coefficient, we can conclude that the probabilities of two treatments are not

the same, and this difference is not due to our covariate. However, although our

covariate is not significant, we have heterogeneity, and we should try to explore its

causes, which is not possible here because we do not have access to other possible

covariates.

5. Conclusion

In this paper, we developed a semiparametric random effect model for meta-

regression. Although Ohlsen et al. (2007) had proposed another model in these

settings, their model suffers from ignoring the regressor coefficients. Also, using

an example, we show that their proposed model doesn’t apply to any data set.

Furthermore, in our settings, we could perform a hypothesis testing about the

equality of probabilities which is not applicable in previous settings due to the

ignorance of the coefficient.
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theta[1] sample: 50000

  -60.0   -40.0   -20.0     0.0

    0.0

   0.02

   0.04

   0.06

   0.08

theta[48] sample: 50000

  -75.0   -25.0     0.0    25.0

    0.0

   0.02

   0.04

   0.06

   0.08

 

node  mean  sd MCerror node  mean  sd MCerror 

theta[1] -15.31 8.318 0.4943  theta[31] -15.12 8.093 0.4807 

theta[2] -15.31 7.91 0.4725  theta[32] -15.26 8.541 0.511 

theta[3] -15.4 8.269 0.4959  theta[33] -15.18 7.928 0.4671 

theta[4] -15.28 8.401 0.4992  theta[34] -15.41 8.172 0.4852 

theta[5] -15.37 8.313 0.4972  theta[35] -14.93 8.49 0.5065 

theta[6] -15.22 7.923 0.4734  theta[36] -15.31 8.19 0.4859 

theta[7] -15.65 8.439 0.5028 theta[37] -15.43 7.921 0.4704 

theta[8] -15.32 8.026 0.4711  theta[38] -15.27 8.4 0.4983 

theta[9] -15.55 8.399 0.5069  theta[39] -15.09 7.975 0.4803 

theta[10] -15.69 8.079 0.4772  theta[40] -15.0 8.439 0.4981 

theta[11] -15.25 7.939 0.4757  theta[41] -15.54 8.185 0.4862 

theta[12] -15.29 8.006 0.4773  theta[42] -15.18 8.454 0.5011 

theta[13] -15.62 8.315 0.4962  theta[43] -15.18 8.18 0.4861 

theta[14] -15.06 7.976 0.4692  theta[44] -15.19 8.254 0.4965 

theta[15] -14.99 8.348 0.4989  theta[45] -15.06 8.208 0.4838 

theta[16] -15.42 8.273 0.4906  theta[46] -15.57 8.147 0.492 

theta[17] -15.19 8.295 0.4917  theta[47] -15.24 8.232 0.4586 

theta[18] -15.61 8.153 0.4855  theta[48] -15.22 8.247 0.4596 

theta[19] -15.37 8.062 0.4784  theta[49] -15.23 8.214 0.4576 

theta[20] -15.34 8.351 0.4889  theta[50] -15.22 8.284 0.461 

theta[21] -15.3 8.064 0.4814  theta[51] -15.27 8.244 0.46 

theta[22] -15.27 7.955 0.4702  theta[52] -15.22 8.269 0.4598 

theta[23] -15.4 7.971 0.4759  theta[53] -15.25 8.236 0.4591 

theta[24] -15.37 8.536 0.5057  theta[54] -15.24 8.205 0.459 

theta[25] -15.12 7.937 0.4681  theta[55] -15.26 8.237 0.4584 

theta[26] -15.53 8.41 0.5052  theta[56] -15.24 8.174 0.4553 

theta[27] -15.12 8.241 0.4932  theta[57] -15.24 8.226 0.4575 

theta[28] -15.14 8.034 0.474  theta[58] -15.24 8.22 0.4595 

theta[29] -15.14 7.836 0.4669 theta[59] -15.23 8.243 0.4605 

theta[30] -15.57 7.983 0.4718  theta[60] -15.25 8.219 0.4583 

Figure 3: Density and Statistics of β
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Figure 4: mean, lower and upper bounds of η, β
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