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1. Introduction

Determining the relationships between input variables and response variables is

one of the most important concepts of statistics which must be considered by

researchers in every statistical study. Investigating the effect of input variables on

response variable and determining the selection of effective variables is also another

part of a study, and, as a result, a model which must be considered. Nowadays,

due to the wide volume of data in different fields of sciences such as data related

to engineering and medicine and things like, it is needed for models that represent

suitable interpretation based on them for data. The closer the represented model

is to the data structure and is farther from selected artificial constraints, the more

comprehensive the results will be. It may be possible to accelerate calculations by

selecting a distribution for response variables, definitely, the achieved result will be

less accurate. Maybe the structure of data needs a combination of distributions and

or a mixture of distributions. It is possible to analyze developing complex data

using these distributions, particularly when data is taken from a heterogeneous

society. Therefore, there is sometimes inhomogeneous and inconsistent data, then

a finite mixture of statistical models is used as a flexible instrument to investigate

such data. Poisson distribution is usually one of the most famous distributions,

which is considered as a response variable to analyze data. Equal mean and

variance in theory and unequal in practice may be considered as one of the weak

points of this distribution. When the number of quantitative variables is high,

and a finite mixture of distributions is considered for the response variable, using

a mixture of Poisson distributions may increase problems for data analysis due to

unequal mean and variance in practice.

The negative binomial distribution is one of the substituent distributions in-

stead of Poisson distribution in a finite mixture of distributions when there is

over-dispersion. This may be a suitable research subject when the data structure

is considered for response variable in a finite mixture of distributions which has

been considered theoretically and practically in this study. A finite mixture of

distributions has been considered in previous studies when the distribution of re-

sponse variables is Poisson, but the current study aims at investigating the changes

in theoretical discussions and data analysis when distribution change is done.

It is worth mentioning that using valid methods like penalty function in select-

ing variables enhances accuracy, in conclusion, bias reduction, and the efficiency

of estimators. In order to reduce the possible biases of modeling, usually, so many

covariates are removed from the initial stages of modeling. On the other hand,

in order to increase prediction capabilities and selecting significant variables, the
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statisticians mostly use step-by-step deletion and selecting the best subsystem of

covariates. This will be discussed and investigated in this study based on response

variable change in two states.

What has created the current study is finite mixture integration from statis-

tical models as well as equating concept. According to the approved regulation

of the Ministry of Science, Research and Technology, students admitted for Ph.D.

grade based on a national-wide exam held by National Organization for Educa-

tional Testing, students introduced several times more than the admission capacity

to the universities and higher education institutions to send the volunteers’ score

to National Organization for Educational Testing based on scientific interview for

final admission of volunteers. Also, it has been regulated that this exam has been

constantly held every other six months, and those volunteers with sufficient scores

are introduced to universities for an interview and things like that. Since indi-

viduals who are referred to universities for an interview during a specific period

are those who have taken part in different exams of the National Organization

for Educational Testing, thus scores distribution will be different for them. As a

result, it is possible to say that there is a finite mixture of several societies. Equal-

ization or equating happens when there is a combination of distributions. The

considerable point here is that the number of questions (samples) that one has to

correctly answer to achieve the maximum score to be introduced for the interview

is a random variable, which may obey negative binomial distribution due to the

bi-state response (true-false). Here, in fact there is a finite mixture of statisti-

cal models with negative binomial distribution, which is necessary to investigate

the theoretical basis and the method of parameters estimation and tests related

to effectiveness and ineffectiveness of contributing factors on the response. The

penalty function has also been used to increase accuracy as a new idea. There-

fore, a literature of the works conducted on the finite mixture of statistical models

represented, then works on equating are discussed.

Although using these methods is useful in practice, they ignore intrinsic random

errors at the stage of variables selection. Therefore, their theoretical properties

have specific complexity, which must be considered by the researcher. Further-

more, selecting the best subset of variables has other specific features that are the

most important of all. Being time-consuming and considering computational dis-

cussions are other problems of these methods which must be considered. However,

the considerable point in selecting variables is correctly detecting the suggested

model to achieve real response, which is considered important in this study. Doing

studies and achieving suitable response based on selecting effective covariates is a
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concept that, if it has been done correctly, it will provide researchers with a better

comprehension of changes existing in their surroundings. It must be considered

more important when variables structure and the relationship between them have

special complexity like semiparametric structure.

2. A Finite Mixture of Statistical Distributions

It is possible to introduce a statistical strategy based on a finite mixture of models

in many cases for natural phenomena to criticize and investigate a wide range of

statistical data. Such distributions are used when the structure of data is com-

plex, and selecting a specific distribution usually faces with problems. Flexibility

for modeling in the finite mixture models is more practical than determining a

unit distribution for data. These distributions are successfully practical in differ-

ent fields like biological, economic, and social sciences and also in different fields

including genetics, medicine, psychology, engineering, and marketing.

Definition 2.1. Consider Y1, · · · , Yn a random sample as much as n, so that Yj

is a p dimensional random vector with probability density function f(yj ; θi) for

(i = 1, · · · , g) on Rp space. if fi(yj ; θi) is the density function of the ith variable

in the ith society, then finite mixture of density function of random variable Y is

written as follows:

f(yj ; Ψ) =

g∑
i=1

πif(Yj ; θi), j = 1, 2, · · · , p (2.1)

Ψ is a vector including all unknown parameters in mixture model and is defined

asψ = (π1, · · · , πg−1, ξ
T )T And π1, · · · , πg are non-negative quantities which are

conisdered as weights and have values between 0 and 1so that:

g∑
i=1

πi = 1 (2.2)

ξ is a vector including all unknown parameters θ1, · · · , θg.

Statistical distributions have been used for finite mixture, Ormoz and Eskan-

dari (2016) hypothesized that response variable obeys generalized semiparamet-

ric regression model in relation to the covariate. According to this study, re-

sponse variable Y with possible values of Y ⊂ R and a vector of covariates is

as (u, x, z) with x = (x1, x2, · · · , xq)T as real variables and nonparametric coeffi-

cients, z = (z1, z2, · · · , zp)T is parametric coefficient of the model and u is a single



Semiparametric Models in Finite Mixture of Negative Binomial 175

variable. Therefore, a finite mixture of semiparametric regression model is defined

as follows:

Definition 2.2. consider G = {f(Y ; θ,Φ); (θ,Φ) ∈ Θ× (0,∞)} a family of para-

metric density functions Y , where Θ ⊂ R and Φ are scattering parameters. It has

been said that (u, x, Y ) is finite mixture of regression models with K order, when

conditional density function Y is represented if (u, x, z):

f(y;u, x, z,Ψ) =

K∑
k=1

πkf (y; θ(u, x, z).Φk) (2.3)

With the following conditions:

a- θk(u, x, z) = h(xTαk(u) + zTβk)

b- α(·) is a vector including unknown functions of smooth regression coefficients.

c- parametric vector Ψ as:

Ψ = (α1, · · · , αK , β1, · · · , βK ,Φ, π including αk = (αk1, · · · , αkq)T , βk =

(βk1, · · · , βkq)T , Φ = (Φ1, · · · ,ΦK)T and π = (π1, · · · , πK−1)T .

A finite mixture of semiparametric models introduced by Ormoz and Eskandari

(2016) as a member of the exponential family, definition 2.2 provides a common

method to model such invisible heterogeneous relations.

However, there is a big problem in the structure of such a family that when

linearity happens, the resulted estimates face instability; that is, the estimations

considerably change based on different samples. To solve such a problem, it is

possible to increase bias a little and consequently decrease variance by zeroing or

contracting some of the coefficients of estimators. As a result, it may improve

the accuracy of the total prediction. To solve such a problem, Santarelli et al.

(2016) have used Conway–Maxwell–Poisson distribution (CMP) as a mixture and

analyzed Gamma ray’s data based on Poisson distribution, and have directly es-

timated the parameters of the suggested model. The important point is that

variable selection and the effect of response change have not been considered in

this study. Sometimes there is data that is not homogenous and consistent. Then,

finite mixture models are used as a flexible instrument to model such data. Ormoz

and Eskandari (2016) introduced variable selection using penalized methods in a

combination of the generalized semiparametric model by Li and Liang (2008) and

a finite mixture of regression models by Khalili and Chen (2007) that penalized

methods have not been investigated about the combination of these two models
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at the same time. Cho and Fryzlewicz (2012) have also studied variable selection.

In fact, they have generally investigated variable selection in exponential distri-

butions family in the introduced model. Then they introduced a finite mixture of

generalized semiparametric models using penalized estimation. In fact, they ex-

panded the model in semiparametric state and considered nonparametric function

multidimensional.

3. The Finite Mixture of Generalized Models

(FMGM) with Negative Binomial Distribution

Response

Finite mixture of Poisson (FMP) distributions is a famous method to analyze

enumerated types. However, since it is covariant (equal mean and variance), it

is limited in use in this distribution due to over-dispersion. As a result, due

to the over-scattered structure, using such substituent methods has been highly

suggested. As a substituent for finite mixture, finite binomial distributions are

suggested. Negative binomial regression (NBR) is a suitable selection to model the

relationship between explanatory variables and a dependent enumerated variable.

Then, Poisson regression generalized state is considered, because the mean of

negative binomial distribution has a similar structure with Poisson regression. Also

it has an extra parameter to model over-dispersion. According to the definition of

negative binomial distribution:

f(yj ;α, β) =

(
yj + α− 1

yj

)(
β

β + 1

)α(
1

β + 1

)yj
IA(yj) (3.4)

Negative binomial distribution (3.4) is denoted with NB(α, β
β+1 ).

4. Variable Selection in A Finite Mixture of Neg-

ative binomial Semiparametric Models

Consider Y an idea response variable, and (X, U, Z) is a vector of covariates

effective on the response variable. Then, a finite mixture of models with negative
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binomial response has been suggested as follow:

f(yi;xi, ui, zi,Ψ) =

K∑
k=1

πkNB(µik,Φk)

NB(µik,Φk) =

[
Γ(yi + Φk)

Γ(yi + 1)Γ(Φk)

(
µik

µik + Φk

)yi ( Φk
µik + Φk

)Φk
]

i = 1, · · · , n; k = 1, · · · ,K

According to relation (3.4), parametric vector Ψ is shown as Ψ = (β1, β2, · · · , βk,
α1, α2, · · · , αk,Φ) inclduing βk = (βk1, · · · , βkp)T , αk = (αk1, · · · , α)T and π =

(π1, · · · , πk−1)T , so that shows the dimensions of covariates. πk > 0 and
∑K
k=1 πk =

1 are possible for vector π · µik is the mean of negative binomial distribution for

ith observation and kth parameter in relation (4.5) as follows:

µik(xi, ui, zi) = exp
(
xTi αk(ui) + zTi βk

)
(4.5)

Variable selection is expressed using penalized likelihood approach and considering

negative binomial distribution finite mixture for response variable in three main

steps and based on EM algorithm.

First Step: Calculating Non-Parametric Coefficients Local

Estimation

Log-likelihood function on the condition of parameter Ψ based on a finite mixture

of negative binomial distributions is defined as follows:

ln(Ψ) =

n∑
i=1

log

{
K∑
k=1

πkf(yi;µik(xi, ui),Φk)

}
(4.6)

As a result, to estimate unknown coefficients based on complete data at the pres-

ence of hypothetical marker variable νik, the complete log-likelihood function is

defined as:

lcn(Ψ) =

n∑
i=1

K∑
k=1

νik {log πk + log{f(yi;µik(xi, ui),Φk)}}

=

n∑
i=1

K∑
k=1

νik

{
log πk + log

(
Γ(yi + Φk)

Γ(yi + 1)Γ(Φk)

)
− (Φk + yi) + yi log(µik) + Φk log(Φk)

}
(4.7)

Due to using a finite mixture model of negative binomial distributions and non-

awareness of nonparametric function α(·), in order to estimate nonparametric sec-

tion, the method introduced by Lee and Liang (2008) using First-Order Taylor
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Linear Approximation, αkj(ν) is as follows for ν and in the neighborhood of a

variable like u:

αkj(ν) ≈ αkj(u)+α′kj(u)(ν−u) ≡ αkj+bkj(ν−u) k = 1, 2, · · · ,K; j = 1, 2, · · · , P
(4.8)

Fuction α(·) is represented for simplification for variable u and kth parameter and

dimension jth with variable αkj and its first ordered derivative with variable bkj

in relation (4.8).

αkj and bkj are Taylor expansion parametric coefficient. Only second order

Taylor expansion is considered in relation (4.8) and this is while the more the

number of orders increases, the more accurate it will be. In order to smooth the

nonparametric section, Taylor series expansion is used to estimate its coefficients.

Therefore, likelihood function based on nonparametric parameter and kernel

function kh(ui − u) = 1
hk
(
ui−u
h

)
is defined for local and approximate estimation

a, b and β as follows:

ln =

n∑
i=1

log

K∑
k=1

{
πk

[
Γ(yi + Φk)

Γ(yi + 1)Γ(Φk)

(
µ̃ik

µ̃ik + Φk

)yi ( Φik
µ̃ik + Φk

)Φk
]
kh(ui − u)

}
(4.9)

Where µ̃ik(ui, xi, zi)) is defined based on a and b as follows:

µ̃ik(ui, xi, zi)) = exp(xTi αk+xTi bk(ui−u)+zTi βk) i = 1, 2, · · · , n; k = 1, 2, · · · ,K
(4.10)

In order to maximize and calculate an optimal value based on relation (4.10), the

complete likelihood function is defined as follows:

lcn(Ψ) =

n∑
i=1

K∑
k=1

νik{log πk + log

(
Γ(yi + Φk)

Γ(yi + 1)Γ(Φk)

)
− (Φk + yi) log(µ̃ik + Φk)

+ yi log(µ̃ik) + Φk log(Φk) + log kh(ui − u)} (4.11)

kh(ui − u), h is the width of band in kernel function. After specifying µ̃ik, op-

timal value of relation (4.10) is calculated using logarithm EM and estimating

parameters and nonparametric section coefficients.
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step E:

In this step, conditional expectation lcn(Ψ) on the condition of νik based on obser-

vations (ui, xi, zi, yi) is defined as follows:

Q
(

Ψ; Ψ(m)
)

=

n∑
i=1

K∑
k=1

ω
(m)
ik [log

(
Γ(yi + Φk)

Γ(yi + 1)Γ(Φk)

)
− (Φk + yi) log(µ̃ik + Φk)

+ yi log(µ̃ik) + Φk log(Φk)] +

n∑
i=1

K∑
k=1

ω
(m)
ik log πk

+

n∑
i=1

K∑
k=1

ω
(m)
ik log kh(ui − u) (4.12)

So that ω
(m)
ik s are conditional expectation of νiks on the condition of observations

and are available as weight values as follows:

ω
(m)
ik =

π
(m)
k

[
Γ(yi+Φk)

Γ(yi+1)Γ(Φk)

(
µ̃
(m)
ik

µ̃
(m)
ik +Φk

)yi (
Φik

µ̃
(m)
ik +Φk

)Φk
]

∑K
k=1 π

(m)
k

[
Γ(yi+Φk)

Γ(yi+1)Γ(Φk)

(
µ̃
(m)
ik

µ̃
(m)
ik +Φk

)yi (
Φik

µ̃
(m)
ik +Φk

)Φk
] (4.13)

Step M:

Q
(
Ψ; Ψ(m)

)
is maximized in the (m+1)th step of repetition stage than the compo-

nents of parametric vector Ψ. When using EM algorithm, maximizing Q
(
Ψ; Ψ(m)

)
based on mixture ratios as well as other parameters has computational complex-

ities. Therefore, it is necessary to calculate mixture rations π
(m+1)
k in each step

based on weights ω
(m)
ik as follows:

π
(m+1)
k =

1

n

n∑
i=1

ω
(m)
ik k = 1, 2, · · · ,K (4.14)

It is possible to maximize Q
(
Ψ; Ψ(m)

)
on the condition of π

(m+1)
k than a, b and β.

According to relation (4.14), a and b are nonparametric coefficients that using EM

algorithm, approximate results are estimated. Thus, we have to solve the following

equations to determine the estimations of coefficients related to parametric and

non-parametric section:

n∑
i=1

ω
(m)
ik

∂

∂βkj
{log

(
Γ(yi + Φk)

Γ(yi + 1)Γ(Φk)

)
− (Φk + yi) log(µ̃ik + Φk) + yi log(µ̃ik)

+ Φk log(Φk) + log kh(ui − u)} = 0 (4.15)
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n∑
i=1

ω
(m)
ik

∂

∂αkj
{log

(
Γ(yi + Φk)

Γ(yi + 1)Γ(Φk)

)
− (Φk + yi) log(µ̃ik + Φk) + yi log(µ̃ik)

+ Φk log(Φk) + log kh(ui − u)} = 0 (4.16)

n∑
i=1

ω
(m)
ik

∂

∂bkj
{log

(
Γ(yi + Φk)

Γ(yi + 1)Γ(Φk)

)
− (Φk + yi) log(µ̃ik + Φk) + yi log(µ̃ik)

+ Φk log(Φk) + log kh(ui − u)} = 0 (4.17)

According to the above equations, a complex equational system of unknowns has

been created, although it is not possible to solve it manually, and it is not possible

to achieve a closed form for them explicitly. Then the estimations will be calculated

in the following.

Second Step: Calculating Penalized β Coefficient Estimation

First, in order to estimate penalized β coefficient, the following likelihood function

is defined:

l(β) =

n∑
i=1

log

K∑
k=1

{
πk

[
Γ(yi + Φk)

Γ(yi + 1)Γ(Φk)

(
µ∗ik

µ∗ik + Φk

)yi ( Φk
µ∗ik + Φk

)Φk
]}

(4.18)

Where µ∗ik is as follows:

µ∗ik(ui, xizi) = exp
(
xTi α̃k(ui) + zTi βk

)
k = 1, 2, · · · ,K (4.19)

µ∗ik and µ̃
(m)
ik are different from each other in that in relation (4.19) instead of

unknown function of previous step nonparametric coefficients, the optimal estima-

tion resulted from the first step is used to calculate more accurate estimations for

parametric coefficients. Maximizing likelihood function l(β) than β, the estimation

of parametric section coefficients are achieved.

Step E:

Like conditional expectation in the first step, the conditional expectation of com-

pletely log-likelihood function l(β) is calculated on the condition of marker vari-

ables νiks and observations (ui, xi, z, yi):

Q
(

Ψ; Ψ(m)
)

=

n∑
i=1

K∑
k=1

ω
(m)
ik [log

(
Γ(yi + Φk)

Γ(yi + 1)Γ(Φk)

)
− (Φk + yi) log(µ∗ik + Φk)

+ yi log(µ∗ik) + Φk log(Φk)] +

n∑
i=1

K∑
k=1

ω
(m)
ik log πk (4.20)
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Where ω
(m)
ik is as follows:

ω
(m)
ik =

π
(m)
k

[
Γ(yi+Φk)

Γ(yi+1)Γ(Φk)

(
µ∗
ik

(m)

µ∗
ik

(m)+Φk

)yi (
Φik

µ∗
ik

(m)+Φk

)Φk
]

∑K
k=1 π

(m)
k

[
Γ(yi+Φk)

Γ(yi+1)Γ(Φk)

(
µ∗
ik

(m)

µ∗
ik

(m)+Φk

)yi (
Φik

µ∗
ik

(m)+Φk

)Φk
] (4.21)

Now it is possible to use the local second-order approximation of Pn(Ψ) instead

of itself.

Step M:

Q
(
Ψ; Ψ(m)

)
defined in step E is maximized in spite of nonparametric section

local estimation than its unknown parameters in the (m+ 1)th step of repetition.

Like the first step, after updating mixing probabilities, considering πk fixed in

Q
(
Ψ; Ψ(m)

)
, it is maximized than β and there will be:

n∑
i=1

ω
(m)
ik

∂

∂βkj
{log

(
Γ(yi + Φk)

Γ(yi + 1)Γ(Φk)

)
− (Φk + yi) log(µ∗ik

(m) + Φk)

+ yi log(µ∗ik
(m)) + Φk log(Φk)} = 0 (4.22)

In fact, it is possible to use penalty functions pLn
(
Ψ; Ψ(m)

)
and or pSn

(
Ψ; Ψ(m)

)
for values k = 1, 2, · · · ,K and j = 1, 2, · · · , P separately instead of pn(βkj) con-

sidering the type of penalty function used in step E in step M. It is important

to consider that optimal value is achieved when after the repetition of several

stages for steps E and M, the difference of Euclidean norm for estimation values of

parametric coefficients for two sequential stages as ‖ β(m+1)
11 − β(m)

11 ‖ is less than

desirable small value like δ. In such a step, the penalized parametric coefficients

of β̂ are achieved, and the homogeneity is confirmed.

Third Step: Calculating Nonparametric Coefficient Accurate

Estimation

It is possible to use the penalized estimations of parametric coefficient β̂ of the

previous step and put them instaed of nonpenalized local estimations of the first

step. In fact, in this step, µ̃∗ik is substituted with µ̃ik in the first step and is defined

as follows:

µ̃∗ik = exp
(
xTi αk + xTi bk(ui − u) + zTi β̂k

)
(4.23)

In fact, in the definition of µ̃∗ik, the nonparametric coefficients a and b are con-

sidered unknown, and the parametric estimation of the second stage regression
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coefficients is replaced. This step mainly aims at accurately calculating a and b

instead of local estimations of ã and b̃ of the first step at the presence of regression

coefficients penalized estimations. Likelihood function in this step based on µ̃∗ik is

as follows:

n∑
i=1

log

K∑
k=1

{
πk

[
Γ(yi + Φk)

Γ(yi + 1)Γ(Φk)

(
µ̃∗ik

µ̃∗ik + Φk

)yi ( Φk
µ̃∗ik + Φk

)Φk
]}

(4.24)

As a result, the complete likelihood function at the presence of variables νik is as

follows:

lcn(Ψ) =

n∑
i=1

K∑
k=1

νik{log πk + log

(
Γ(yi + Φk)

Γ(yi + 1)Γ(Φk)

)
− (Φk + yi) log(µ̃∗ik + Φk)

+ yi log(µ̃∗ik) + Φk log(Φk) + log kh(ui − u)} (4.25)

Step E:

Conditional expectation lcn(Ψ) on the condition of invisible marker variables νik

and observations (ui, xi, zi, yi) is defined as follows:

Q
(

Ψ; Ψ(m)
)

=

n∑
i=1

K∑
k=1

ω
(m)
ik [log

(
Γ(yi + Φk)

Γ(yi + 1)Γ(Φk)

)
− (Φk + yi) log(µ̃∗ik + Φk)

+ yi log(µ̃∗ik) + Φk log(Φk)]

+

n∑
i=1

K∑
k=1

ω
(m)
ik log πk +

n∑
i=1

K∑
k=1

ω
(m)
ik log kh(ui − u) (4.26)

Where ω
(m)
ik s are calculated as follows:

ω
(m)
ik =

π
(m)
k

[
Γ(yi+Φk)

Γ(yi+1)Γ(Φk)

(
µ̃∗
ik

(m)

µ̃∗
ik

(m)+Φk

)yi (
Φik

µ̃∗
ik

(m)+Φk

)Φk
]

∑K
k=1 π

(m)
k

[
Γ(yi+Φk)

Γ(yi+1)Γ(Φk)

(
µ̃∗
ik

(m)

µ̃∗
ik

(m)+Φk

)yi (
Φik

µ̃∗
ik

(m)+Φk

)Φk
] (4.27)

Step M:

Q
(
Ψ; Ψ(m)

)
is maximized than unknown nonparametric coefficients in the (m +

1)th step of repetition. In fact, it is possible after updating mixing probabilities,

so considering πk fixed and scolding equations (4.27) and (4.27) there will be:

n∑
i=1

ω
(m)
ik

∂

∂αkj
{log

(
Γ(yi + Φk)

Γ(yi + 1)Γ(Φk)

)
− (Φk + yi) log(µ̃∗ik

(m) + Φk) + yi log(µ̃∗ik
(m))

+ Φk log(Φk) + log kh(ui − u)} = 0 (4.28)
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n∑
i=1

ω
(m)
ik

∂

∂bkj
{log

(
Γ(yi + Φk)

Γ(yi + 1)Γ(Φk)

)
− (Φk + yi) log(µ̃∗ik

(m) + Φk) + yi log(µ̃∗ik
(m))

+ Φk log(Φk) + log kh(ui − u)} = 0 (4.29)

After solving equation (4.29) in the step M of the second stage, in order to estimate

unknown coefficients of the nonparametric section more accurately against local

estimations of the nonparametric coefficients at the first stage, equations (4.28)

and (4.29) will be solved. Like the first stage, there is another complex equational

system here that is impossible to achieve a closed form for than explicitly. As a

result, the optimal response of the equations system is achieved with the neces-

sary number of repetitions. When the EM algorithm becomes homogenous after

passing stages E and M, the main estimations of â and b̂ are achieved. Therefore,

nonparametric coefficients accurate estimations of the third stage and parametric

coefficients penalized estimations of second stage are resulted as {â, b̂, β̂}. Calcu-

lations are done generally in four steps:

a- Considering an initial value for β called β0.

b- Calculating local estimation of nonparametric function as α̂(u) = α̂.

c- Calculating the estimation of parametric coefficient β called β0 at the pres-

ence of nonparametric function α̂(u).

d- Calculating the accurate estimation of nonparametric function based on co-

efficients a and b of Taylor expansion at the presence of coefficient β called

â and b̂.

The final results are considered after repeating steps E and M and EM algorithm

homogeneity in each of the computational steps.

5. Simulation Study

In order to compare the results of using negative binomial distribution instead of

Poisson distribution in a finite mixture of models, a simulation program was used

to estimate parameters. The following steps have been done:

1- First as primary value, parameters vector considered as β0 =

(
1 0.7

0.5 −0.8

)
and simulation algorithm is repeated for 100 times. Since it is possible to

investigate both models based on primary value, so, comparing these two

models does not affect on the results.
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2- First, two Poisson distributions are written as a linear combination, so that

the weight of both Poisson distributions will be (0.450146&0.549854). This

will be (0.492196&0.507804) for negative binomial distribution.

3- Then, the log-likelihood function for observations is achieved based on a

mixture of two Poisson distributions and a mixture of two negative binomial

distributions. According to the results in table 1 based on the log-likelihood

function, a mixture of two negative binomial distributions is more valid than

a mixture of two Poisson distributions. The values are considerably different.

Table 1: estimating the logarithm values of the likelihood function for a mixture

of distributions
Mixture type of distributions The estimation of log-likelihood function

Poisson two distribution combination −307.3718

Negative binomial two distribution combination −289.276

According to Table 1, the statistic of logarithm values of likelihood function is big-

ger in using negative binomial distribution than Poisson distribution. This shows

that the fitness of the model is better in using a finite mixture of generalized linear

models based on negative binomial distribution than a finite mixture of generalized

linear models based on Poisson distribution. Also, Table 2 shows the estimates of

parameters and the estimates of the variance in both mixture distributions. Wald

statistics for estimators determined in both mixture distributions still confirms the

related hypotheses for the finite mixture of two negative binomial distribution. In

Table 2: the estimation of parameters and determining statistic based on Poisson

two distribution and negative binomial distribution
The type of distribution The estimation of parameters The estimation of estimator variance Wald statistic Sig

first Poisson distribution 3.88 1.067 14.109 The hypothesis is rejected

second Poisson distribution 0.499 0.00005 4.98 The hypothesis is rejected

First negative binomial distribution 0.588 0.356 0.874 The hypothesis is approved

second negative binomial distribution 0.541 0.00006 4.87 The hypothesis is approved

order to investigate that change of distribution from a finite mixture of two Poisson

distributions to a finite mixture of two negative binomial distributions is suitable,

the statistic of Weighted Generalized Mean Squared Error will be used, which is

shown as WGMSE and is defined as follows:

WGMSE = γΛ1 + (1− γ)Λ2
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So that for i = 1, 2 there is:

Λi = (β̂i0, β̂i1)T

(
V ar(β̂i0) Cov(β̂i0, β̂i1)

Cov(β̂i0, β̂i1) V ar(β̂i1)

)
(β̂i0, β̂i1)

Considering that estimated weights in a finite mixture of Poisson distributions are:

γpois = (0.55, 0.45)

and Λi values for Poisson distribution are:

Λpois = (0.783, 0.736)

Therefore, there will be:

WGMSEpois = (0.55 ∗ 0.783) + (0.45 ∗ 0.736) = 0.762

If a finite mixture of negative binomial distributions is considered for, then, there

will be:

γnbinom = (0.43, 0.57)

And there is Λnbinom = (0.105, 0.068). As a result:

WGMSEnbinom = (0.43 ∗ 0.105) + (0.57 ∗ 0.068) = 0.083

Regarding that, the mixture of two negative binomial distributions has been re-

placed with a mixture of two Poisson distributions, and with comparing between

them using the mixture of efficiency or (MENB−PO), we have:

MENB−PO =
0.762

0.083
= 9.18

Figure 1 shows the superiority of negative binomial distributions over Poisson

distributions based on 30 times repeating the suggested model simulation. The

dotted line in Figure 1 shows values related to Λ in Poisson distribution, and the

continuous diagram is related to Poisson distribution after 30 time repetition.

6. Practical Example

The statistical population of this study is related to the number of participants

of the doctoral exam during 2019 and 2020, which has been held as a national

wide exam by National Organization for Educational Testing. Each of these tests

includes 45 questions. The number of 1540 and the number of 1480 individuals



186 S. Naghizadeh Ardebili

Figure 1: Comparison between Λ values between mixture of negative binomial distribution and

Poisson distribution.

have participated in the statistics Ph.D. degree exam in 2019 and 2020, respec-

tively, and the information of all of them has been used in this study. We have

the information such as the type of bachelor’s and master’s degree university (gov-

ernment, Payam Noor, non-profit, free university and scientific-applied), type of

admission period (daily, second round, Payam Noor, non-profit, etc.), gender, and

year of birth. Using this information, we have formed a number 4 Table in which

the name and code of the master’s degree university, the number of admissions

and rejections, as well as the number of female admissions in 2019 and 2020, are

listed. For example, the University of Isfahan in 2019 had 625 participants in the

doctoral exam, of which 49 were accepted, one of whom was a woman. However,

this university had 586 participants in the doctoral exam in 2020, of which 108

were admitted, and 18 were female. Imam Khomeini International University had

164 and 256 participants in 2019 and 2020, respectively, of which 25 and 96 were

accepted, respectively, none of whom were women. The highest number of women

admitted is related to the University of Science and Technology, which in 2019

and 2020, respectively 210 and 108 were among those accepted. Now, the finite

mixture model of Poisson distributions and the finite mixture of negative bino-

mial distributions are fitted to the data. Therefore, first, the logarithm of both



Semiparametric Models in Finite Mixture of Negative Binomial 187

models likelihood function is estimated after fitting both models. Table 3 shows

these values. The results of Table 3 show the superiority of the finite mixture of

generalized linear models based on negative binomial distribution over the finite

mixture of generalized linear models based on Poisson distribution. Table 4 shows

Table 3: the estimation of the logarithm of likelihood function for a mixture of

distributions
Mixture type of distributions The estimation of the logarithm likelihood function

Poisson −132.7962

Negative binomial −48.9094

the estimation of model parameters and the estimation of variance. Wald statistic

shows that the hypotheses of fixed values not influencing and quantitative unit are

effective on the response variable. WGMSE will be used to investigate whether

Table 4: parameters estimation and determining tests statistic based on Poisson

distributions and negative binomial distributions
The type of distribution The estimation of parameters The variance estimator Wald statistic Sig

Poisson first distribution 0.0381 0.001 1.204 The hypothesis is approved

Poisson second distribution 0.022 0.001 0.695 The hypothesis is approved

First negative binomial distribution 0.029 0.001 0.917 The hypothesis is approved

second negative binomial distribution 0.064 0.001 2.02 The hypothesis is approved

finite mixture distribution change from Poisson two distribution combination to a

finite mixture of two distributions negative binomial distribution combination is

suitable or not and it is:

WGMSE = γΛ1 + (1− γ)Λ2

So that for i = 1, 2 there is:

Λi = (β̂i0, β̂i1)T

(
V ar(β̂i0) Cov(β̂i0, β̂i1)

Cov(β̂i0, β̂i1) V ar(β̂i1)

)
(β̂i0, β̂i1)

Considering that estimated weights in a finite mixture of Poisson distributions are:

γpois = (0.50, 0.50)

and Λi values for Poisson distribution are:

Λpois = (0.432, 0.697)

Therefore, there will be:

WGMSEpois = (0.50 ∗ 0.432) + (0.50 ∗ 0.697) = 0.564
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If it is considered for a finite mixture of negative binomial distributions, there will

be:

γnbinom = (0.43, 0.57)

And there is Λnbinom = (1.016, 1.163) As a result:

WGMSEnbinom = (0.995 ∗ 0.105) + (0.005 ∗ 0.068) = 0.1048

According to two distributions, negative binomial distribution has been replaced

with two distribution Poisson distribution, comparing the statistics of tests showed

less value. In fact there is:

The mixture efficiency of negative binomial than the mixture of Poisson distri-

bution
0.564

0.1048
= 5.42

The study conducted on data related to the Ph.D. degree exam shows that using a

finite mixture of negative binomial distributions is considerably superior to using

a finite mixture of Poisson two distributions. The ability variable has also been

determined as effective viable in both societies (2019 and 2020). This has been

confirmed by the simulation study.
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