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1. Introduction

Longitudinal data arises when more than one response is measured on each subject

in the study. These types of data are commonly used in many fields such as health

research, economics, and biology. In this case, the outcomes are not independent,

so the linear regression model cannot be used to analyze this data.

A generalized linear mixed model (GLMM) is an extension to the generalized

linear model (GLM) in which the linear predictor contains random effects and the

fixed effects, which is widely used to model correlated responses. The random

effects are applied to capture the correlation within the observations. The GLMM

is the conditional distribution of a response variable y given the s × 1 vector of

unobserved random effects u as g(E[y | u]) = Xβ + Z u. Here X and Z are

N × p and N × s design matrices related to the fixed effect and the random effect

parameters, respectively, and g(t) is the link function. In Poisson and negative

binomial model g(t) = ln(t). We refer to textbook of McCulloch et al. (2008)

for more information about GLMMs. Poisson mixed model (PMM) is useful

for analyzing correlated count data when the mean and variance of correlated

responses are equal. But in practice, data are often over-dispersed, that is, the

variance of data is greater than the average. In this case, parameter estimation

can be seriously biased based on PMM. Hence, a negative binomial mixed model

(NBMM) is appropriate for analyzing this data.

The main aim of this study is to estimate the fixed parameters in NBMM based on

the linear shrinkage, preliminary test, shrinkage preliminary test, shrinkage, and

positive shrinkage estimators under linear restriction on the fixed parameters when

the random effects are considered as nuisance parameters. The linear restriction

can be obtained from some uncertain prior information (UPI) or non-sampling

information (NSI) about the parameters. Based on the information, some of the

predictors may not have an influence on the interest response. Hence, we study

two models: One is the unrestricted model that includes all p fixed parameters,

and we estimate this model with an unrestricted estimator. The other model is

the candidate restricted model where β satisfies the linear restriction

Rβ = r

where R is a q×p matrix of rank q ≤ p and r is a q×1 vector of known constants,

where q is the number of inactive fixed parameters in the unrestricted model. The

shrinkage estimators are defined by using unrestricted and restricted estimators of

parameters in the unrestricted and the restricted models, respectively. For de-

tailed information about shrinkage strategies see Saleh (2006). Recently, Thomson
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andHossain (2018) proposed preliminary test, shrinkage, and positive shrinkage

strategies to estimate the fixed parameters in a generalized linear mixed model.

Hossain et al. (2018) proposed the shrinkage strategies in the linear mixed model.

Also, Hossain et al. (2015) introduced the shrinkage and penalty estimators in

a GLM. Many authors have applied shrinkage strategies in different regression

models. Some of them are Roozbeh et al. (2020), Yuzbasi et al. (2020), Arashi

and Roozbeh (2019), Saleh et al. (2019), Noori Asl et al. (2020), Zandi et al.

(2021) and Hossain and Howlader (2015) among others.

In this paper, we develop the linear shrinkage, preliminary test, shrinkage pre-

liminary test, shrinkage, and positive shrinkage estimation methods, and compare

their performance with the maximum likelihood estimator for NBMM when some

of the fixed covariates may be subject to a linear restriction.

The remainder of this article is organized as follows. The negative binomial mixed

model and suggested estimators are introduced in Section 2. The asymptotic prop-

erties of the proposed estimators and their asymptotic distributional biases and

risks are presented in Section 3. The results of a Monte Carlo simulation study

are reported in Section 4. The proposed estimation methods are applied to the

salamander’s dataset in Section 5. Finally, conclusions are presented in Section 6.

2. Negative binomial mixed model

Suppose that we have a sample of N observations from n subjects. Let yij denote

the response for the ith subject measured at the jth time, where i = 1, 2, . . . , n,

j = 1, 2, . . . , ni and N =
∑n
i=1 ni. Let yi = (yi1, yi2, . . . , yini)

T denotes the

ni × 1 vector of response for the ith subject. Corresponding to each yi, let

Xi = (xi1
T ,xi2

T , . . . ,xini
T )T and Zi = (zi1

T , zi2
T , . . . , zini

T )T be the ni × p

and ni × s design matrices related to the fixed effects and the random effects,

respectively, where xij = (xij1, xij2, . . . , xijp)
T and zij = (zij1, zij2, . . . , zijs)

T .

Thus, the negative binomial mixed model on the ith subject is defined as

ln(E(yi | ui)) = Xiβ + Ziui, (2.1)

where β = (β1, β2, . . . , βp)
T is the p× 1 vector of unknown regression parameters

for the fixed effects and ui = (ui1, ui2, . . . , uis)
T is the s×1 vector of random effects

for the ith subject. Following Hossain et al. (2018) and Thomson andHossain

(2018), we assume that ui independently has a multivariate normal distribution

Ns(0,θ) where θ = diag(θ1, θ2, . . . , θs) is the s × s variance-covariance matrix

associated with the random effects. Suppose that conditional on ui, the elements
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of yi are independent, and has a negative binomial distribution with the probability

function as following:

f(yi | ui,µi) =
Γ(yi + 1

ν )

Γ( 1
ν ) Γ(yi + 1)

(
ν µi

1 + ν µi

)yi
(

1

1 + ν µi

) 1
ν

, (2.2)

where Γ(.) is the gamma function, ν > 0 is the model heterogeneity or over-

dispersion parameter, and µi = E(yi | ui) = exp(Xiβ+Ziui) is the mean param-

eter.

The likelihood function of the parameters (β,θ) given the vector of responses

y = (y1,y2, . . . ,yn)T is

L((β,θ) | y) =

n∏
i=1

∫ ni∏
j=1

fyij |ui(yij | ui,β)fui(ui | θ) dui

=

n∏
i=1

∫
fyi|ui(yi | ui,β)fui(ui) dui. (2.3)

To obtain the unrestricted score equations, we use the log-likelihood function as

L∗((β,θ) | y) = ln[L((β,θ) | y)]

=

n∑
i=1

ln
(∫

fyi|ui(yi | ui,β)fui(ui | θ) dui

)
(2.4)

Based on Hossain et al. (2018) and Thomson andHossain (2018), we consider

the random effects as nuisance parameters, and we assume that θ is known, so

that the only parameters that we estimate are the fixed effects, β. Hence, the log-

likelihood function becomes a function of β only, and the estimation procedure

solves the corresponding score equation to estimate β. We solve the corresponding

score equation to obtain the unrestricted maximum likelihood estimator of β and

is given by

∂ L∗(β | y)

∂ β
=

n∑
i=1

E
(∂ ln(fyi|ui(yi | ui,β))

∂ βt
| yi
)

=

n∑
i=1

E

({
yi xit − (yi +

1

ν
)
( exp(Xiβ + Ziui)

1 + ν exp(Xiβ + Ziui)

)}
| yi

)
= 0. (2.5)

Equation (2.5) has not closed form of β. Therefore, we solve it via numerical

optimization to obtain the maximum likelihood estimator (see McCulloch et al.

(2008), chap. 14). We denote the unrestricted estimator (UE) of β by β̂
UE

.
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We assumed that θ is known, so the log-likelihood function of the model (2.2) can

be defined by

L(β | y) =

n∑
i=1

{
yi ln(ν) + yi ln(µi) − (yi +

1

ν
) ln
(
1 + ν µi

)
+ ln

(
Γ(yi +

1

ν
)
)
− ln

(
Γ(yi + 1)

)
− ln(Γ(

1

ν
))

}
, (2.6)

We now obtain the observed Fisher information matrix as derived by McCulloch

et al. (2008) as follows:

I = I(β,β) = −∂
2 L(β | y)

∂ βt ∂ βk

=

n∑
i=1

(
ν (yi +

1

ν
) xit xik

{ exp(Xiβ + Ziui)

[1 + ν exp(Xiβ + Ziui)]2

})
. (2.7)

To obtain the restricted estimator (RE) of β, we consider testing the general linear

hypothesis

H0 : Rβ = r versus H1 : Rβ 6= r. (2.8)

The restricted estimator of β denoted by β̂
RE

can be obtained by maximizing the

log-likelihood function (2.4) under the hypothesis H0 in Equation (2.8). Based on

Hossain et al. (2015), the restricted estimator has the following form:

β̂
RE

= β̂
UE
− I−1RT (R I−1RT )−1(Rβ̂

UE
− r). (2.9)

2.1 Likelihood ratio test

Based on the estimators β̂
UE

and β̂
RE

, we define the likelihood ratio test statistic

for testing H0 : Rβ = r versus H1 : Rβ 6= r as:

Dn = 2 {L(β̂
UE
| y)− L(β̂

RE
| y)}. (2.10)

where L(β̂
UE
| y) and L(β̂

RE
| y) are values of the log-likelihood function (2.6) at

the unrestricted and restricted estimators, respectively. Under the null hypothesis

H0 in Equation (2.8), the test statistic Dn asymptotically follows a χ2-distribution

with q degrees of freedom.

2.2 Improved estimators

We propose the improved estimators including linear shrinkage, preliminary test,

shrinkage preliminary test, shrinkage, and positive shrinkage estimators in the

following sub-sections.
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2.2.1 The linear shrinkage estimator

The linear shrinkage (LS) estimator of β denoted by β̂
LS

as the linear combination

of the unrestricted and restricted estimator

β̂
LS

= δ β̂
RE

+ (1− δ) β̂
UE
, (2.11)

where δ denotes the shrinkage intensity or the level of confidence in the prior

information. The optimal value of 0 ≤ δ ≤ 1 is obtained by minimizing the mean

squared error of the LS estimator. When δ > 0, the performance of the linear

shrinkage estimator is better than the unrestricted estimator.

2.2.2 The preliminary test and shrinkage preliminary test estimators

The preliminary test estimator (PT ) of β denoted by β̂
PT

is defined as:

β̂
PT

= β̂
UE
− (β̂

UE
− β̂

RE
) I(Dn ≤ Dn,α), (2.12)

where I(.) is an indicator function, Dn,α is the α-level upper critical value of the

test statistic Dn in Equation (2.10).

The shrinkage preliminary test estimator (SP ) of β denoted by β̂
SP

can be

defined by replacing the restricted estimator with the linear shrinkage estimator

in Equation (2.12). Ahmed (1992) proposed this estimator as:

β̂
SP

= β̂
UE
− δ (β̂

UE
− β̂

RE
) I(Dn ≤ Dn,α). (2.13)

2.2.3 The shrinkage and positive shrinkage estimators

The shrinkage estimator (S), β̂
S

of β combines the unrestricted and restricted

estimators in an optimal way dominating the unrestricted estimator as follows:

β̂
S

= β̂
UE
−
(q − 2

Dn

)
(β̂

UE
− β̂

RE
), q ≥ 3. (2.14)

and positive shrinkage estimator of β denoted by β̂
S+

has the following form:

β̂
S+

= β̂
UE
−
(q − 2

Dn

)+
(β̂

UE
− β̂

RE
), q ≥ 3, (2.15)

where z+ = max(0, z). The positive shrinkage estimator adjustment controls for

the over-shrinking problem in β̂
S

.
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3. Asymptotic results

In this section, we study the asymptotic properties, containing asymptotic distri-

butional biases and risks of proposed estimators in previous section for NBMM.

When the linear restriction Rβ = r is wrong, we investigate the asymptotic prop-

erties of the estimators under the sequence of local alternatives defined by:

K(n) : Rβ = r +
ξ√
n
, n = 1, 2, . . . (3.16)

where ξ = (ξ1, ξ2, ..., ξq)
T ∈ Rq is a q×1 fixed vector of real numbers. It is obvious

that for ξ = 0, we have Rβ = r for all n, which is a special case of (3.16). To

explore the properties of the estimators, we mention the regularity conditions as

follows:

• The parameter space for β is compact. The score function (2.5) is continuous

function of β for all y and measurable functions of y.

• There exists unique MLE of β for L∗(β | y). The moments of ∂ L
∗(β|y)
∂ β exist

at least up to the third order.

• The design matrices Xi and Zi in negative binomial mixed model ln(E(yi |
ui)) = Xiβ + Ziui are of full rank and all of their elements are bounded by

a single finite real number.

We now present the following lemma, which is helpful for deriving the asymptotic

distributional bias (ADB) and the asymptotic distributional risk (ADR) of various

estimators.

Lemma 3.1. Under the above regularity conditions and the sequence of local

alternatives in Equation (3.16), as n→∞

Zn =
√
n(β̂

UE
− β)

D−→ Z ∼ Np(0,B−1),

Kn =
√
n(Rβ̂

RE
− r)

D−→ K ∼ Np(ξ,R B−1RT ),

Vn =
√
n(β̂

RE
− β)

D−→ V ∼ Np(−J ξ,B−1 −JR B−1),

Wn =
√
n(β̂

UE
− β̂

RE
)
D−→W ∼ Np(J ξ,JRB−1),(

Zn

Wn

)
D−→

(
Z

W

)
∼ N2p

[(
0

J ξ

)
,

(
B−1 JRB−1

JR B−1 JR B−1

)]
,(

Vn

Wn

)
D−→

(
V

W

)
∼ N2p

[(
−J ξ
J ξ

)
,

(
B−1 −JR B−1 0

0 JR B−1

)]
,



106 Z. Zandi, ...

where J = B−1RT (RB−1RT )−1, B = limn→∞ I(β,β)/n converges in probability

to a non-random p×p positive definite matrix, and I(β,β) is the observed Fisher

information matrix in NBMM given in Equation (2.7).

Using the above Lemma, we can present ADB and ADR results. In order

to obtain the asymptotic risks (ADR) of the estimators, we define the following

weighted quadratic loss function:

L(β̂
∗
,β; Q) =

(√
n(β̂

∗
− β)

)T
Q
(√

n(β̂
∗
− β)

)
, (3.17)

where β̂
∗

is any of the proposed estimators in the previous section and Q is a

positive semi-definite weight matrix. When Q is chosen as the identity matrix I,

the usual quadratic loss function is defined, which we use in our simulation studies

in the next section. The asymptotic distributional bias (ADB) of an estimator β̂
∗

is defined as

ADB(β̂
∗
) = lim

n→∞
E
(√

n(β̂
∗
− β)

)
=

∫
...

∫
x dG(x), (3.18)

where G is the cumulative distribution function of β̂
∗
. In order to simplify the no-

tations to describe ADB and ADR results, let T1 and T2 be χ2
q+2(∆∗) and χ2

q+4(∆∗)

random variables, respectively. The distribution function of a non-central χ2 vari-

able with d degrees of freedom and the non-centrality parameter ∆∗ is denoted

by Hd(x,∆
∗) = P (χ2

d(∆
∗) ≤ x). Also, let χ2

q,α be the α-level critical value of the

central χ2 distribution. Using Lemma 3.1, we present the asymptotic biases of the

estimators in the following Theorem.

Theorem 3.2. Under the sequence of local alternatives in Equation (3.16) and

the regularity conditions, the ADBs of the estimators are

ADB(β̂
UE

) = 0,

ADB(β̂
RE

) = −J ξ,

ADB(β̂
LS

) = −δJ ξ,

ADB(β̂
PT

) = −J ξHq+2(χ2
q,α; ∆∗),

ADB(β̂
SP

) = −δJ ξHq+2(χ2
q,α; ∆∗),

ADB(β̂
S

) = −(q − 2)J ξE
( 1

T1

)
,

ADB(β̂
S+

) = ADB(β̂
S

)− J ξHq+2(χ2
q,α; ∆∗)

+ (q − 2)J ξE

(
I(T1 < q − 2)

T1

)
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where ∆∗ = ξT (RB−1RT )−1ξ.

Proof: for detailed proof see Appendix 1.

Remark 3.3. To compare the ADB of the estimators, let ψ = −J ξ/
√

∆∗ where

∆∗ = ξT (RB−1RT )−1ξ. Based on Theorem 3.2, the ADB of all estimators is

a scalar function of ∆∗ with the vector ψ. The scale factor
√

∆∗ of the ADB of

β̂
RE

is an unbounded function of ∆∗, but the scale factors in the ADBs of other

estimators are bounded in ∆∗. Since E( 1
T1

) is a decreasing function of ∆∗, the

ADB of the shrinkage and positive shrinkage estimators starts from 0 at ∆∗ = 0,

increases to a maximum, and then decreases towards 0, as ∆∗ increases.

Now, we define the asymptotic distributional risk of β̂
∗

by

ADR(β̂
∗
; Q) =

∫
...

∫
xTQ x dG(x) = trace(QΣ), (3.19)

where Σ is the dispersion matrix for the distribution G(x) and defined as:

Σ(β̂
∗
) = lim

n→∞
E
(√

n(β̂
∗
− β)

√
n(β̂

∗
− β)T

)
=

∫
...

∫
xTx dG(x). (3.20)

Next, we present the asymptotic distributional risks (ADR) of the estimators in

the following Theorem.

Theorem 3.4. Under the sequence of local alternatives in Equation (3.16) and

the usual regularity conditions, the ADRs of the estimators are

ADR(β̂
UE

;Q) = trace(QB−1),

ADR(β̂
RE

;Q) = ADR(β̂
UE

;Q)− trace(QJ RB−1) + ξT J T QJ ξ,

ADR(β̂
LS

;Q) = ADR(β̂
UE

;Q)− δ (2− δ) trace(QJ RB−1) + δ2 ξT J T QJ ξ,

ADR(β̂
PT

;Q) = ADR(β̂
UE

;Q)− trace(QJ RB−1)Hq+2(χ2
q,α; ∆∗)

+ [2Hq+2(χ2
q,α; ∆∗)−Hq+4(χ2

q,α; ∆∗)] ξT J T QJ ξ,

ADR(β̂
SP

;Q) = ADR(β̂
UE

;Q)− δ (2− δ) trace(QJ RB−1)Hq+2(χ2
q,α; ∆∗)

+ [2 δHq+2(χ2
q,α; ∆∗)− δ (2− δ)Hq+4(χ2

q,α; ∆∗)] ξT J T QJ ξ,

ADR(β̂
S

;Q) = ADR(β̂
UE

;Q)− (q − 2) trace(QJ RB−1)
{

2E
[ 1

T1

]
− (q − 2)E

[ 1

T 2
1

]}
+ (q − 2)

{
2E
[ 1

T1
− 1

T2

]
+ (q − 2)E

[ 1

T 2
2

]}
ξT J T QJ ξ,

ADR(β̂
S+

;Q) = ADR(β̂
S

;Q)− trace(QJ RB−1)E
(

(1− q − 2

T1
)2 I(T1 < q − 2)

)
− E

(
(1− q − 2

T2
)2 I(T2 < q − 2)

)
ξT J T QJ ξ

+ 2E
(

(1− q − 2

T1
) I(T1 < q − 2)

)
ξT J T QJ ξ.
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Proof: for detailed proof see Appendix 2.

Remark 3.5. To compare the asymptotic distributional risks of the estimators,

when ξ = 0, that is Rβ = r, the restricted estimator dominates the unrestricted es-

timator. However, when ξ moves away from 0 vector, the ADR of the restricted es-

timator becomes unbounded. When the linear restriction is correct, the preliminary

test estimator has a smaller risk than that of the shrinkage estimator. As ξ moves

away from 0, the shrinkage preliminary test estimator dominates the preliminary

test estimator. By comparing the risks of the shrinkage, positive shrinkage, and

unrestricted estimators, we can see ADR(β̂
S+

) ≤ ADR(β̂
S

) ≤ ADR(β̂
UE

) for

ξ ≥ 0.

4. Simulation study

In this section, we present the details of the performance of the proposed esti-

mators with respect to the unrestricted estimator using Monte Carlo simulation

with statistical software R. We have used the glmmTMB package to obtain an

unrestricted estimation of the fixed effect coefficients. In our study, the criterion

for comparing the performance of any estimator is the simulated relative efficiency

(SRE). We consider the negative binomial mixed model (NBMM) with n = 60

subjects and ni = 7 observations for all i. We generate the count responses from

NBMM as:

µij = exp(xij
Tβ + ui).

We consider generating p = 7, 13, 17, 20. Each of the p fixed effect covariates

xij = (xij1,xij2, . . . ,xijp)
T are generated from a separate ni-multivariate normal

distribution with mean 0 and variance-covariance matrix σ2I, where σ2 = 0.02

and I is a ni × ni identity matrix. The random effects ui are generated from a

ni-multivariate normal distribution with mean 0 and variance-covariance matrix

θ, where θ = diag(0.2, 0.5, 0.8, 0.3, 0.1, 0.4, 0.3) is a ni × ni diagonal matrix.

We are interested in testing the hypothesis Rβ = r, where R is a q × p matrix of

full row rank, and r is a q × 1 vector of known constants. We consider a special

case of this hypothesis with R = [0q×(p−q), Iq] and r = 0q×1, where 0a×b is a a× b
matrix (vector) of zeros. Now, we partition the fixed effect coefficients vector of β

as β = (βT 1,β
T
2)T where, β1 and β2 are p1 × 1 and q × 1 vectors contain active

and inactive fixed parameters, respectively, such that p = p1 + q. Therefore, p1

and q are the number of active and inactive fixed parameters, respectively. We set

p1 = 4 throughout the study and q = 3, 9, 13, 16 so, p = 7, 13, 17, 20.
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We next define the distance between the simulation model and the restricted model

as ∆ = ||β−βtrue|| =
∑p
i=1(βi−βtruei )2, where ||.|| is the Euclidean norm, β is the

parameter vector in the simulated model, and βtrue is the true parameter. We set

∆ = {0.0, 0.5, 1.0, 1.5, 2.0} in our simulations. Samples are generated using the

over-dispersion parameter ν = 1.25 and the true parameter βtrue = (βtrue1 ,βtrue2 )T

as βtrue1 = (2.1, 1.5, −1.2, −1.3)T and βtrue2 = 0q
T . Based on the definition of

∆, when candidate restricted model is correct (∆ = 0), we have β1 = βtrue1 and

β2 = βtrue2 . When ∆ > 0, we have β1 = βtrue1 and β2 = (a, 0, 0, ..., 0︸ ︷︷ ︸
q−1

)
T

, where a

is a scalar, so that a =
√

∆. Hence, a = {0.0, 0.70, 1.0, 1.22, 1.41}. The number

of replications is set to 1, 000 for all cases.

We define the simulated mean squared errors (SMSE) of the improved estimators

in section 2 as follows:

SMSE(β̂
∗
) =

p∑
i=1

(βtruei − β̂∗i )2,

where βtruei is ith element of the true parameter βtrue and β̂
∗

is one of the pro-

posed estimators defined in the previous section. The criterion for comparing

the performance of any estimator β̂
∗

in our simulation is the simulated relative

efficiency (SRE) and is defined as:

SRE(β̂
∗
, β̂

UE
) =

SMSE(β̂
UE

)

SMSE(β̂
∗
)
.

A value of SRE greater than one indicates that β̂
∗

performs better than β̂
UE

.

4.1 The results of simulation

The simulated relative efficiencies (SREs) for all the proposed estimators are

reported in Tables 1, 2 and Figures 1a, 1b, and 1c for the shrinkage inten-

sity parameter δ = 0.50, 0.75 and the level critical value of the test statistic

α = 0.01, 0.05, 0.10. When ∆ = 0, the SRE for all the proposed estimators are

greater than one and increase as the number of inactive predictors q is increased.

The restricted estimator has maximum SRE in all configurations in this case.

The linear shrinkage estimator depends on the choice of δ. For the higher value of

δ, its SRE approaches to the SRE of the restricted estimator. The performance

of the preliminary test estimator is better than the shrinkage preliminary test

estimator at ∆ = 0. The simulation results reveal that as ∆ > 0, the SREs of
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the restricted estimator and the other estimators decline sharply. When ∆ moves

away from zero, the SRE of the SP is greater than that of the PT. At ∆ ≥ 0, the

performance of the positive shrinkage estimator is much better than the shrinkage

estimator.

Table 1: The SREs of the estimators with respect to the unrestricted estimator

for δ = 0.50 and 0 ≤ ∆ ≤ 2

q ∆ RE LS PT SP S S+

α α

0.01 0.05 0.10 0.01 0.05 0.10

3 0.0 1.724 1.460 1.684 1.564 1.432 1.438 1.370 1.292 1.178 1.246

0.5 1.419 1.392 1.364 1.269 1.195 1.343 1.257 1.191 1.137 1.173

1.0 0.927 1.228 0.891 0.893 0.906 1.110 1.039 1.020 1.066 1.073

1.5 0.588 1.028 0.682 0.788 0.853 0.919 0.936 0.952 1.023 1.028

2.0 0.388 0.838 0.705 0.880 0.926 0.886 0.954 0.971 1.009 1.010

9 0.0 3.368 2.108 3.184 2.602 2.344 2.052 1.852 1.750 2.282 2.518

0.5 2.769 2.038 2.581 2.153 1.855 1.955 1.746 1.582 2.033 2.222

1.0 1.808 1.855 1.605 1.379 1.259 1.650 1.416 1.290 1.656 1.740

1.5 1.146 1.615 1.021 0.991 0.985 1.268 1.128 1.076 1.397 1.420

2.0 0.757 1.367 0.832 0.892 0.923 1.031 1.002 0.996 1.252 1.254

13 0.0 4.672 2.433 4.455 3.674 3.098 2.388 2.200 2.030 3.009 3.359

0.5 3.790 2.370 3.500 2.838 2.338 2.278 2.035 1.816 2.685 3.045

1.0 2.240 2.184 2.122 1.717 1.515 1.964 1.639 1.469 2.135 2.266

1.5 1.510 1.928 1.279 1.145 1.091 1.507 1.277 1.181 1.731 1.761

2.0 0.989 1.654 0.927 0.944 0.962 1.162 1.060 1..029 1.485 1.490

16 0.0 5.488 2.573 5.021 4.023 3.382 2.492 2.282 2.112 3.573 4.201

0.5 4.486 2.513 4.058 3.347 2.668 2.404 2.190 1.941 3.171 3.625

1.0 2.893 2.338 2.567 1.997 1.722 2.150 1.782 1.585 2.481 2.675

1.5 1.817 2.092 1.499 1.284 1.193 1.661 1.369 1.247 1.963 2.020

2.0 1.194 1.822 1.040 1.004 0.994 1.254 1.108 1.061 1.642 1.656

5. A real data

In this section, we have considered the salamanders’ dataset, which is available

in the package of glmmTMB in R software. This data was acquired from Dryad

(Price et al. (2016)). The data contains N = 644 observations with n = 161

subjects, and each of them was sampled ni = 4 times. The dependent variable

and covariates are described in Table 3. The mean and variance of the data are

1.33 and 6.95, respectively. Since the variance is more than the mean, the data

are over-dispersed. So, a NBMM is an appropriate model for describing this data.

We have considered seven covariates mined (X1), cover (X2), sample (X3),
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(a) The SREs of the estimators with respect to the unrestricted estimator for q =

3, 9, 13, 16, α = 0.01 and δ = 0.75

(b) The SREs of the estimators with respect to the unrestricted estimator for q =

3, 9, 13, 16, α = 0.05 and δ = 0.75

(c) The SREs of the estimators with respect to the unrestricted estimator for q =

3, 9, 13, 16, α = 0.10 and δ = 0.75
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Table 2: The SREs of the estimators with respect to the unrestricted estimator

for δ = 0.75 and 0 ≤ ∆ ≤ 2

q ∆ RE LS PT SP S S+

α α

0.01 0.05 0.10 0.01 0.05 0.10

3 0.0 1.724 1.649 1.684 1.564 1.432 1.615 1.510 1.394 1.178 1.246

0.5 1.419 1.474 1.364 1.269 1.195 1.412 1.304 1.221 1.137 1.173

1.0 0.927 1.123 0.891 0.893 0.906 1.001 0.984 0.977 1.066 1.073

1.5 0.588 0.805 0.682 0.788 0.853 0.805 0.867 0.907 1.023 1.028

2.0 0.388 0.576 0.705 0.880 0.926 0.798 0.919 0.951 1.009 1.010

9 0.0 3.368 2.922 3.184 2.602 2.344 2.791 2.359 2.157 2.282 2.815

0.5 2.769 2.642 2.581 2.153 1.855 2.476 2.089 1.814 2.033 2.222

1.0 1.808 2.055 1.605 1.379 1.259 1.776 1.478 1.326 1.656 1.740

1.5 1.146 1.500 1.021 0.991 0.985 1.200 1.089 1.050 1.397 1.420

2.0 0.757 1.088 0.832 0.892 0.923 0.949 0.958 0.967 1.252 1.254

13 0.0 4.672 3.795 4.455 3.674 3.098 3.639 3.146 2.736 3.009 3.539

0.5 3.790 3.443 3.500 2.838 2.338 3.212 2.662 2.230 2.685 3.045

1.0 2.420 2.678 2.122 1.717 1.515 2.304 1.815 1.580 2.135 2.266

1.5 1.510 1.951 1.279 1.145 1.091 1.502 1.266 1.172 1.731 1.761

2.0 0.989 1.414 0.927 0.944 0.962 1.081 1.021 1.006 1.485 1.490

16 0.0 5.488 4.259 5.021 4.023 3.382 3.990 3.368 2.933 3.573 4.201

0.5 4.486 3.891 4.058 3.347 2.668 3.580 3.036 2.487 3.171 3.625

1.0 2.893 3.073 2.567 1.997 1.722 2.703 2.068 1.767 2.675 2.675

1.5 1.817 2.273 1.499 1.284 1.193 1.734 1.399 1.264 1.963 2.020

2.0 1.194 1.665 1.040 1.004 0.994 1.199 1.080 1.042 1.642 1.656

DOP (X4), Wtemp (X5), DOY (X6), and spp(X7) as the fixed covariates and

site as the random covariate. To determine the active and inactive covariates, we

have used the variable selection method based on the Akaike information criterion

(AIC). This criterion shows that the coefficients of mined, cover, DOY, and spp

are the significant fixed parameters, and the coefficient of the sample, DOP, and

Wtemp are inactive fixed parameters. Hence, the restricted subspace is Rβ = r,

where β = (β1, β2, β3, β4, β5, β6, β7)T , and R and r is given by

R =

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

 , r =

0

0

0


The above restriction can be written as (β3, β4, β5)T = (0, 0, 0)T . So, p = 7,

p1 = 4, and q = 3. We have assumed δ = 0.75 and α = 0.01.

In order to examine the performance of the various estimation strategies, we have

chosen m = 300 observations with replacement M = 1, 000 times from the original



Estimation of Fixed Parameters in Negative Binomial Mixed Model 113

dataset using bootstrap sampling,. The point estimates, standard errors, and the

relative efficiencies (RE) of the significant fixed parameters are reported in Table

4. The results completely agree with the theory established in Section 3 and our

numerical results in Section 4.

6. Conclusion

The main aim of this article was the estimation of the fixed parameters in the neg-

ative binomial mixed model based on shrinkage estimators and comparing their

performance with the unrestricted estimator when certain prior subspace informa-

tion is available. We computed the properties of the suggested estimators based on

simulated relative efficiency using Monte Carlo experiments in R statistical soft-

ware. The simulation study results revealed that when the subspace information

was correct, the SREs of all estimators were greater than one and increased as

the number of inactive fixed parameters (q) was increased and the performance

of the restricted estimator was better than the other estimators. The SRE of the

positive shrinkage estimator was better than the shrinkage estimator at ∆ ≥ 0.
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Table 3: The list of variables for the salamanders’ dataset

Variable Description

Response variable

count number of salamanders observed

covariate

mined factor indicating whether the site was affected by mountain top removal coal mining

cover amount of cover objects in the stream (scaled)

sample repeated sample

DOP Days since precipitation (scaled)

Wtemp water temperature (scaled)

DOY day of year (scaled)

spp abbreviated species name, possibly also life stage

site name of a location where repeated samples were taken
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Appendix 1. Proof of Theorem 3.2

The following Lemma is needed for the derivation of the bias and risk functions.

Lemma 6.1. Let y be a q-dimensional random vector distributed as Nq(µy,Σy).

Then, for any measurable function ϕ, we have

E[yϕ(yTy)] = µyE[ϕ(χ2
q+2(∆∗))], (6.21)

E[yTyϕ(yTy)] = ΣyE[ϕ(χ2
q+2(∆∗))] + µy

T µyE[ϕ(χ2
q+4(∆∗))], (6.22)

where ∆∗ is the non-centrality parameter.

Proof : See Judge et al. (1978).

Here, we provide the proof of the bias expressions. Based on Lemma 3.1 we

have

ADB(β̂
UE

) = lim
n→∞

E[
√
n (β̂

UE
− β)] = E(Z) = 0

ADB(β̂
RE

) = lim
n→∞

E[
√
n (β̂

RE
− β)] = E(V) = −J ξ

ADB(β̂
LS

) = lim
n→∞

E[
√
n (β̂

LS
− β)]

= lim
n→∞

E[
√
n (δ β̂

RE
+ (1− δ) β̂

UE
− β)]

= lim
n→∞

E[
√
n (β̂

UE
− β)− δ

√
n(β̂

UE
− β̂

RE
)]

= E(Z)− δ E(W)

= −δJ ξ

ADB(β̂
SP

) = lim
n→∞

E[
√
n (β̂

SP
− β)]

= lim
n→∞

E[
√
n (β̂

UE
− δ (β̂

UE
− β̂

RE
) I( Dn) ≤ χ2

q,α)− β)]

= lim
n→∞

E[
√
n(β̂

UE
− β)− δ

√
n (β̂

UE
− β̂

RE
) I( Dn) ≤ χ2

q,α)]

= E(Z)− δ E(W I( Dn) ≤ χ2
q,α))

= −δ E(W I( Dn) ≤ χ2
q,α)),

based on Equation (6.21), we can write

ADB(β̂
SP

) = −δJ ξE[I(χ2
q+2(∆∗) ≤ χ2

q,α)]

= −δJ ξ P (χ2
q+2(∆∗) ≤ χ2

q,α)

= −δJ ξHq+2(χ2
q,α; ∆∗).
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If δ = 1,

ADB(β̂
PT

) = −J ξHq+2(χ2
q,α; ∆∗).

In a similar way, we can obtain

ADB(β̂
S

) = lim
n→∞

E[
√
n (β̂

S
− β)]

= lim
n→∞

E[
√
n (β̂

RE
+ (1− (q − 2) D−1n ) (β̂

UE
− β̂

RE
)− β)]

= lim
n→∞

[
E[
√
n (β̂

RE
− β)] + E[

√
n (β̂

UE
− β̂

RE
)]

− (q − 2)E[D−1n
√
n (β̂

UE
− β̂

RE
)]
]

= lim
n→∞

[
E[
√
n (β̂

UE
− β)]− (q − 2)E[D−1n

√
n (β̂

UE
− β̂

RE
)]
]

= E(Z)− (q − 2)E(D−1n W)

= −(q − 2)J ξE
[ 1

T1

]
.

ADB(β̂
S+

) = lim
n→∞

E[
√
n (β̂

S+

− β)]

= lim
n→∞

E[
√
n [β̂

S
− β − (1− (q − 2)D−1

n ) (β̂
UE
− β̂

RE
) I(Dn < q − 2)]

= ADB(β̂
S

)− lim
n→∞

E
√
n [(β̂

UE
− β̂

RE
) (1− (q − 2)D−1

n ) I(Dn < q − 2)]

= ADB(β̂
S

)− E[W (1− (q − 2)D−1
n ) I(Dn < q − 2)]

= ADB(β̂
S

)− E[W I(Dn < q − 2)] + (q − 2)E[WD−1
n I(Dn < q − 2)]

= ADB(β̂
S

)− J ξHq+2(χ2
q,α; ∆∗) + (q − 2)J ξE

(
I(T1 < q − 2)

T1

)
.
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Appendix 2. Proof of Theorem 3.4

We first derive the asymptotic covariance of the estimators as defined in Equation

(3.20)

Σ(β̂
UE

) = lim
n→∞

E
(√

n(β̂
UE
− β)

√
n(β̂

UE
− β)T

)
= lim
n→∞

E(Zn Zn
T )

= E(Z ZT )

= V ar(Z) + E(Z)E(ZT )

= B−1

Σ(β̂
RE

) = lim
n→∞

E
(√

n(β̂
RE
− β)

√
n(β̂

RE
− β)T

)
= lim
n→∞

E(Vn Vn
T )

= E(V VT )

= V ar(V) + E(V)E(VT )

= B−1 −J R B−1 + (J ξ) (J ξ)T

Σ(β̂
LS

) = lim
n→∞

E
(√

n(β̂
LS
− β)

√
n(β̂

LS
− β)T

)
= lim
n→∞

E[(Zn − δWn) (Zn − δWn)T ]

= E[(Z− λW) (Z− λW)T ]

= E[Z ZT ]− 2δ E[Z WT ] + δ2E[W WT ]

= B−1 − 2δ E[Z WT ]︸ ︷︷ ︸
e1

+δ2 [J R B−1 + (J ξ) (J ξ)T ]

Using the conditional expectation, e1 becomes

e1 = E[Z WT ]

= E
(
E[Z WT |W]

)
= E

(
WT E[Z |W]

)
Based on Lemma 3.1, we have(

Zn

Wn

)
D−→

(
Z

W

)
∼ N2p

[(
0

J ξ

)
,

(
B−1 JRB−1

JR B−1 JR B−1

)]
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Using the conditional expectation of a multivariate normal distribution, we can

write

E[Z |W] = E
[
Z +

( cov(Z,W)

σ(Z)σ(W)

)( σ(Z)

σ(W)

) (
W− E(W)

)]
,

based on Lemma 3.1,

E[Z] = 0 , E[W] = J ξ , σ2[Z] = B−1,

σ2[W] = J R B−1 , cov[Z,W] = J R B−1

So,

E[Z |W] = E
[
0 +

J R B−1

J R B−1
(W−J ξ)

]
= E[W−J ξ]

Hence, we have

e1 = E
[

(W−J ξ) WT
]

= E[W WT ]−J ξE[W]

= J R B−1

Therefore

Σ(β̂
LS

) = B−1 − δ (2− δ)J R B−1 + δ2 (J ξ) (J ξ)T .

Next we obtain Σ(β̂
SP

) as follows

Σ(β̂
SP

) = lim
n→∞

E
(√

n(β̂
SP
− β)

√
n(β̂

SP
− β)T

)
= lim
n→∞

E[ {Zn − δWn I(Dn) ≤ χ2
q,α)} {Zn − δWn I(Dn) ≤ χ2

q,α)}T ]

= lim
n→∞

E(Zn ZTn )− 2δ lim
n→∞

E(Zn WT
n I(Dn) ≤ χ2

q,α))

+ δ2 lim
n→∞

E(Wn WT
n I(Dn) ≤ χ2

q,α))

= E(Z ZT )− 2δ E(Z WT I(Dn) ≤ χ2
q,α)) + δ2E(W WT I(Dn) ≤ χ2

q,α))

= B−1 − 2δ E(Z WT I(Dn) ≤ χ2
q,α))︸ ︷︷ ︸

e2

+ δ2 E(W WT I(Dn) ≤ χ2
q,α))︸ ︷︷ ︸

e3

,

using Equation (6.22), we have

e3 = J R B−1 Hq+2(χ2
q,α; ∆∗) + (J δ) (J δ)T Hq+4(χ2

q,α; ∆∗),



122 Z. Zandi, ...

and by using conditional expectation, e2 becomes

e2 = E[Z WT I(Dn) ≤ χ2
q,α)]

= E
[
E(Z WT I(Dn) ≤ χ2

q,α) |W)
]

= E
[
E(Z |W) WT I(Dn) ≤ χ2

q,α)
]

= E
[
{E(Z) + (W−J ξ)}WT I(Dn) ≤ χ2

q,α)
]

= E[W BT I(Dn) ≤ χ2
q,α)]︸ ︷︷ ︸

e3

−J ξE[WT I(Dn) ≤ χ2
q,α)]

= J R B−1 Hq+2(χ2
q,α; ∆∗)− (J ξ) (J ξ)T [Hq+2(χ2

q,α; ∆∗)−Hq+4(χ2
q,α; ∆∗)]

Therefore,

Σ(β̂
SP

) = B−1 − δ (2− δ)J R B−1 Hq+2(χ2
q,α; ∆∗)

+ (J β) (J β)T [2δHq+2(χ2
q,α; ∆∗)− δ (2− δ) Hq+4(χ2

q,α; ∆∗)].

For δ = 1, Σ(β̂
PT

) reduces to

Σ(β̂
PT

) = B−1 −J R B−1 Hq+2(χ2
q,α; ∆∗)

+ (J ξ) (J ξ)T [2 Hq+2(χ2
q,α; ∆∗)−Hq+4(χ2

q,α; ∆∗)].

Now we obtain Σ(β̂
S

) as follows:

Σ(β̂
S

) = lim
n→∞

E
(√

n(β̂
S
− β)

√
n(β̂

S
− β)T

)
= lim
n→∞

E
[√

n
(
β̂
RE

+ (1− (q − 2)D−1n ) (β̂
UE
− β̂

RE
)− β

)
×
√
n
(
β̂
RE

+ (1− (q − 2)D−1n ) (β̂
UE
− β̂

RE
)− β

)T ]
= lim
n→∞

E[(Zn − (q − 2) D−1n Wn) (Zn − (q − 2) D−1n Wn)T ]

= E[(Z− (q − 2) D−1n W) (Z− (q − 2) D−1n W)T ]

= E[(Z ZT ]− 2(q − 2) E[W ZT D−1n ]︸ ︷︷ ︸
e4

+(q − 2)2 E[W WT D−2n︸ ︷︷ ︸
e5

],

similar to e1, we can write e4 as follows:

e4 = E[W ZT D−1n ]

= E[W WT D−1n ]−J ξE[W D−1n ]

= J R B−1E
[ 1

T1

]
− (J ξ) (J ξ)T

(
E
[ 1

T1

]
− E

[ 1

T2

])
,
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and by using Equation (6.22), e5 becomes

e5 = E[W WT D−2n ]

= J R B−1E
[ 1

T 2
1

]
+ (J ξ) (J ξ)T E

[ 1

T 2
2

]

Therefore,

Σ(β̂
S

) = B−1 − 2(q − 2)J R B−1E
[ 1

T1

]
+ 2(q − 2) (J ξ) (J ξ)T

{
E
[ 1

T1

]
− E

[ 1

T2

]}
+ (q − 2)2 J R B−1E

[ 1

T 2
1

]
+ (J ξ) (J ξ)T E

[ 1

T 2
2

]
= B−1 + (q − 2)J R B−1

{
(q − 2)E

[ 1

T 2
1

]
− 2E

[ 1

T1

]}
+ (q − 2) (J ξ) (J ξ)T

{
− 2E

[ 1

T2

]
+ 2E

[ 1

T1

]
+ (q − 2)E

[ 1

T 2
2

]}

Finally, we can write Σ(β̂
S+

) as follows:

Σ(β̂
S+

) = lim
n→∞

E
(√

n(β̂
S+

− β)
√
n(β̂

S+

− β)T
)

= lim
n→∞

E
[√

n
(
β̂
S
− (1− (q − 2) D−1n ) I(Dn < q − 2) (β̂

UE
− β̂

RE
)− β

)
×
√
n
(
β̂
S
− (1− (q − 2) D−1n ) I(Dn < q − 2) (δ̂

UE
− β̂

RE
)− β

)T ]
= Σ(β̂

S
)− 2E[W VT (1− (q − 2) D−1n ) I(Dn < q − 2)]

− 2E[W WT (1− (q − 2) D−1n )2 I(Dn < q − 2)]

+ E[W WT (1− (q − 2) D−1n )2 I(Dn < q − 2)]

= Σ(β̂
S

)− 2E[W VT (1− (q − 2) D−1n ) I(Dn < q − 2)]︸ ︷︷ ︸
e6

− E[W WT (1− (q − 2) D−1n )2 I(Dn < q − 2)]︸ ︷︷ ︸
e7

,

now we obtain e6
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e6 = E[W VT (1− (q − 2) D−1n ) I(Dn < q − 2)]

= E[WE{VT (1− (q − 2) D−1n ) I(Dn < q − 2) |W}]

= E[WE{−J ξ + 0 × (J R B−1)−1 (W−J ξ)}T

× (1− (q − 2) D−1n ) I(Dn < q − 2)]

= −E[WJ ξ (1− (q − 2) D−1n ) I(Dn < q − 2)]

= −(J ξ) (J ξ)T E
[(

1− q − 2

T1

)
I(T1 < q − 2)

]
,

and based on Equation (6.22), e7 becomes

e7 = E[W WT (1− (q − 2) D−1n )2 I(Dn < q − 2)]

= J R I−1E
[(

1− q − 2

T1

)2
I(T1 < q − 2)

]
+ (J ξ) (J ξ)T E

[(
1− q − 2

T2

)2
I(T2 < q − 2)

]
.

Therefore, Σ(β̂
S+

) becomes

Σ(β̂
S+

) = V(β̂
S

) + 2(J ξ) (J ξ)T E
[(

1− q − 2

T1

)
I(T1 < q − 2)

]
− (J ξ) (J ξ)T E

[(
1− q − 2

T1

)2
I(T2 < q − 2)

]
−J R B−1E

[(
1− q − 2

T1

)2
I(T1 < q − 2)

]
.

Now, the proof of Theorem 3.4 can be derived using the above results by following

the definition of ADR.
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