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Abstract:

The aim of this paper is to learn the Bayesian network structure for discrete

variables. For this purpose, we introduce a Gibbs sampler method. Each sample

represents a Bayesian network. Thus, in the process of Gibbs sampling, we obtain

a set of Bayesian networks. For achieving a single graph that represents the best

graph fitted on data, we use the mode of burn-in graphs. This means that the

most frequent edges of burn-in graphs are considered to indicate the best single

graph. The results on the well-known Bayesian networks show that our method

has higher accuracy in learning Bayesian network structure..
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1. Introduction

A graphical model is a statistical model embodying a set of conditional indepen-

dence relationships. We consider the structure learning for graphical models based

on the directed acyclic graphs (DAGs), which are known as Bayesian network (BN)

(Pearl , 1998). In BNs, the nodes are random variables, and the arcs specify the

conditional independence structure between the random variables (Heckerman ,

1998). The learning task in a BN can be separated into two subtasks, structure

learning; which is to identify the topology of the network, and parameter learning;

which is, to estimate the parameters (conditional probabilities) for a given network

topology(Arias et al. , 2015).

One hypothetically well-founded approach for learning BN is to use the Markov

Chain Monte Carlo (MCMC) techniques. This approach is very popular, and vari-

ations have been used by Madigan et al. (1995) and Giudici and Giudici (2003).

Madigan et al. (1995) proposed the original version of the MCMC in which each

move in the Markov chain consists of basically a single edge changes to the cur-

rent graph (G). This algorithm is a classical Metropolis-Hastings sampler. The

acceptance probability is min(1, r(G′, G)):

r(G′, G) = min{1, #nbd(G)P (G′|D)

#nbd(G′)P (G|D)
}, (1.1)

where G′ is the proposal BN, P (G|D) is the posterior probability of a graph given

a database of cases D, and #nbd(G) is the number of neighbors which consist of

the current graph G, and a set of graphs with either one edge more or one edge

fewer than a current graph.

While the original version of MCMC generally performs well in little spaces with a

few variables, it is rather slow in convergence with a larger number of variables, and

the chain is getting trapped in local high probability. For overcoming this problem,

some methods have been introduced. Friedman and Koller (2003) proposed a

variety of the MCMC algorithm based on the node ordering. Niinimaki et al.

(2012) presented an algorithm based on the partial node ordering to make smoother

sampling space. Su and Borsuk (2016) improved the structure of MCMC for BNs

through the Markov blanket resampling and Goudie and Mukherjee (2016) used

a specific Gibbs sampling based on the entire sets of parents for multiple nodes

from the appropriate conditional distribution.

In this paper, we focus on the discrete variables and introduce a novel Gibbs

sampler for learning BN without considering entire sets of parents. More details

are presented in section 2.
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This paper is organized as follows: in section 2, we introduce the proposed method.

The Experimental Results and Discussion are presented in section 3 and section

4, respectively.

2. Proposed Method

Suppose we have a domain of discrete variables U = {X1, · · · , Xn} and a complete

database of cases D. We wish to determine the joint distribution of data and BN.

For this purpose, the following assumptions must be considered (Heckerman and

Geiger , 1995).

Assumption 1. Given domain U and D, let Dl denote the first l− 1 cases in the

database. In addition, let xil and Πil denote the variable xi, and the parent set Πi

in the lth case, respectively. Then, for a Bayesian network structure B in U , there

exist positive parameters Θ such that, for i = 1, · · · , n, and for all k, k1, · · · , ki−1,

P (xil = k|x1l = k1, · · · , x(i−1)l = ki−1, Dl,Θ) = θijk (2.2)

where j is the state of Πil consistent with {x1l = k1, · · · , x(i−1)l = ki−1} .

This assumption is known as ”Multinomial Sample Assumption” and θijk de-

notes the multinomial parameters. If we let Nijk be the number of cases in the

database D in which xi = k and Πi = j, then

P (D|Θ) =
∏
i

∏
j

∏
k

θ
Nijk

ijk . (2.3)

Assumption 2. Let define Θij = ∪rik=1θijk, Θi = ∪qij=1Θij and Θ = ∪ni=1Θi, in

which ri is the number of states of variable xi and qi is the number of states of

Πi. Then the proper prior distribution of Θij is Dirichlet. This assumption says

that there exist exponents N ′ijk, which depend on a given network B, that satisfy

π(Θij |B) = c.
∏
k

θ
N ′

ijk−1
ijk , (2.4)

where c is a normalization constant.

When every parameter set of B has a Dirichlet distribution, we simply say

that π(Θ|B) is also Dirichlet. Combining the Dirichlet assumption and Eq.2.2,

the following posterior probability is obtained:

π(Θ|D,B) = c.
∏
i

∏
j

∏
k

θ
N ′

ijk+Nijk−1
ijk . (2.5)
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As shown, all the above equations are calculated for a given network B. How-

ever, in practice, we imagine that the data is a random sample from an unknown

B. Thus, instead of π(Θ|D,B), we need to determine the posterior distribution

π(Θ, B|D). The search space of all BN structures is extremely large. It has

been shown that the number of different structures grows super-exponential with

respect to the number of nodes (Pearl , 1998). Thus, identifying the correct struc-

ture among all structures is a NP-hard problem. According to the product rule of

probability, we have:

π(Θ, B|D) = π(Θ|B,D)π(B|D). (2.6)

To sample from the joint posterior distribution Θ and B, we first sample from the

posterior π(B|D) and replace it in full conditional posterior π(Θ|B,D). We then

have samples of Θ and B.

Our approach for estimating the marginal posterior π(B|D) is Gibbs sampling.

Gibbs sampler involves ordering the parameters and sampling from the conditional

distribution for each parameter given the current value of all the other parameters

and repeatedly cycling through this updating process. For learning BN using

Gibbs sampler, we redefine the unknown structure B by a set of new parameters

e = {euk, 1 ≤ u < k ≤ n} as follows:

euk =


0 There is no edge between node u and node k

1 There is a dir ected edge from node u to node k

−1 There is a directed edge from node k to node u

.

In other words, the existence and the direction of the edges in B are specified by

a set of parameters {euk}. This means that

π(B|D) = π({euk}|D). (2.7)

The samples from π({euk}|D) represent the estimated BN. Thus, we need to cal-

culate the following full conditional probabilities in the context of Gibbs sampling:

π(euk|{e−uk}, D) ∝ P (D|{euk})π(euk|{e−uk}), (2.8)

where {e−uk} is a set of edges except euk. For calculating P (D|{euk}) in Eq.2.7,

we need to use the ”Parameter Independence” (Assumption 3) and ”Parameter

Modularity” (Assumption 4) as follows: (Heckerman and Geiger , 1995).
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Assumption 3. Given a network structure B, we have:

a.π(Θ|B) =

n∏
i=1

π(Θi|B)

b.π(Θi|B) =

qi∏
i

π(Θij |B).

Assumption 3a says that the parameters associated with each variable in a

network structure are independent. This assumption is called global parameter

independence. Assumption 3b says that the parameters associated with each state

of the parents of a variable are independent. This assumption is called local

parameter independence.

Assumption 4. Given two network structures B1 and B2, if Xi has the same

parents in B1 and B2, then:

π(Θij |B1) = π(Θij |B2)

This assumption says that the densities for parameters Θij depend only on the

structure of the network.

Based on the consequences of these assumptions, the following formula is obtained

for P (D|{euk}) (for more detail see (Heckerman and Geiger , 1995)):

P (D|{euk}) =

n∏
i=1

qi∏
j=1

Γ(N ′ijk)

Γ(N ′ijk +Nij)
.

ri∏
k=1

Γ(N ′ijk +Nijk)

Γ(N ′ijk)
. (2.9)

To determine the posterior distribution in Eq.2.7, we also need to determine the

prior distribution π(euk|{e−uk} where it is a critical issue in Bayesian analysis.

Most of the prior information about parameters is unreliable. This has led us

to use a noninformative discrete uniform prior. More precisely, we consider the

noninformative discrete uniform prior on all acyclic networks. This means that for

π(euk = c|{e−uk}), c = −1, 0, 1, if all values of c will result in an acyclic network,

then:

π(euk = c|{e−uk}) =
1

3
, (2.10)

and if for some values of c, the graph becomes cyclic, then the prior probability

π(euk = c|{e−uk}) is uniformly distributed only on the other values of c that make

the graph acyclic.

Regarding Eq.2.8 and Eq.2.9, we can take samples from the posterior π({euk}|D).

These samples indicate the BNs at iterations of Gibbs sampling. Finally, for

achieving a single graph that represents the best graph fitted on data, we use

the mode of burn-in graphs. This means that the most frequent edges of burn-in

graphs are considered as the best single graph.
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3. Experimental Results

In this section, we present experimental results. We use four well-known BN

structures; Asia (Lauritzen and Spiegelhalter , 1998), Diabetes (Ripley , 2007),

Learning.test and Alarm (Beinlich et al. , 1989).

Figure 1: Learning.test, Asia, Diabetes and Alarm networks



Gibbs Sampler 93

We generate 20000 cases from each BN in order to perform multiple tests and

estimate more precise metrics.

• The Learning. Test is small synthetic network, for testing purposes. This

BN has 6 nodes and 5 edges; each node has two or three values. This BN is

available in the ”bnlearn” package in R.

• The Asia network has 8 nodes and 8 edges; each variable one has two at-

tributes. This BN is a small BN about lung diseases (tuberculosis, lung

cancer, or bronchitis) and visits to Asia.

• The Diabetes network has 9 nodes and 11 edges. This BN is originally from

the National Institute of Diabetes and Digestive and Kidney Diseases. The

objective is to predict whether a patient has diabetes based on diagnostic

measurements.

• The ALARM network has 37 variables and 46 edges; each variable has two,

three, or four possible attributes. The Alarm network is designed to provide

an alarm message system for patient monitoring.

The existence of the original BNs allows us to define important terms, which

indicate the performance of our approach. In this line, we compare the edge

scores by computing the number of correct edges, missing, reverse, and additional

compared to the original BN by the following definitions:

• Correct edge (C): Edges detected with the same edge direction.

• Reverse edge (R): Edges detected with the opposite edge direction.

• Missing edge(M): Edges not detected compared to the original BN.

• Additional edge(A): Edges that are not presented in the original BN.

Based on these definitions, graph error edges (E) are computed by summing the

three erroneous edge types (i.e., missing, reverse, and additional edges). The

edge scores make it possible to define the performance accuracy of the proposed

approach by the following equation:

Accuracy =
C

C + E
. (3.11)

As it is known, in the process of the Gibbs sampling, we obtain many BNs. Thus,

for achieving a single graph that represents the best graph fitted on data, we use

the mode of burn-in graphs. To evaluate the final graph obtained by the proposed



94 V. Rezaei Tabar

method, we report the True Positive rate (TPR) and False Positive Rate, which

are defined as follows (Fu , 2012):

TPR =
C

T
, FPR =

R+A

n(n− 1)− T
(3.12)

where T is the total number of original edges. A higher value of TPRs and small

values of FPRs represent the proper graphs fitted to the data.

We compare the performance of our approach with the original MCMC, the

method proposed by Goudie and Mukherjee (2016), and the following well-known

approaches:

• Max-Min Hill-Climbing (MMHC): The MMHC is a hybrid algorithm that

combines the Max-Min parents and children algorithm to restrict the search

space and the Hill-Climbing algorithm to find the optimal graph structure

in the restricted space (Tsamardinos et al. , 2006). The algorithm first iden-

tifies the parents and children set of each variable, then performs a greedy

hill-climbing search in the space of DAGs. The search begins with an empty

graph. The edge addition, deletion, or direction reversal that leads to the

largest increase in score is taken, and the search continues similarly recur-

sively.

• 2-phase Restricted Maximization (RSMAX2): The RSMAX2 is a more gen-

eral implementation of the Max-Min Hill Climbing, which can use any com-

bination of constraint-based and score-based algorithms (Tsamardinos et al.

, 2006).

The results of using these methods are shown in 1. Table1 shows that the proposed

method has higher correct values and fewer errors. The results of this paper are

very close to the results of Goudie and Mukherjee (2016). The computational

complexity of the proposed method is higher than the Goudie and Mukherjee

(2016). For instance, when the number of nodes is 9 (Diabetes), the estimated

graphical model for the proposed method contains 11 directed edges, of which 9

edges are present in the true graph, one edge has direction reversed, and one edge

is not included in the true graph.
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Table 1: Comparing Edge Scores, TPR and FPR
Data Edge Type Proposed Method Original MCMC MMHC RSMAX2 Goudie et al.

Learning.test Correct 4 3 4 4 4

Reverse 1 1 1 1 1

Additional 0 1 1 0 0

Missing 0 1 0 1 0

Graph error 1 3 2 2 1

TPR 0.80 0.60 0.80 0.80 0.80

FPR 0.04 0.08 0.08 0.08 0.04

Asia Correct 8 5 6 4 8

Reverse 0 1 0 0 0

Additional 0 0 1 0 0

Missing 0 1 2 4 0

Graph error 0 2 3 4 0

TPR 1 0.62 0.75 0.5 1

FPR 0 0.02 0.02 0 0

Diabetes Correct 9 6 9 7 9

Reverse 1 1 1 1 1

Additional 0 1 1 3 1

Missing 1 2 1 3 1

Graph error 2 4 3 7 3

TPR 0.81 0.54 0.81 0.63 0.81

FPR 0.01 0.02 0.02 0.04 0.02

Alarm Correct 39 26 32 32 40

Reverse 1 6 6 1 1

Additional 0 8 5 0 0

Missing 2 7 8 13 2

Graph error 3 21 19 14 2

TPR 0.84 0.56 0.69 0.69 0.86

FPR 0.0007 0.01 0.008 0.0007 0.0007

4. Conclusion

As it is known, the number of BN structures is super-exponential in the number

of random variables in the domain. Consequently, the summation of all possible

structures can be computed in a closed form only for small domains, or those with

supplemental constraints that restrict the space. In this paper, we focus on the

small BNs with a few discrete variables and use a Gibbs sampler for learning BN.

The results in Figure 3 suggest that our method can estimate the structures of BNs

with reasonable accuracy. For further work, we use the data information to restrict

the space of possible graphs. This means that we make zero prior probability of

some possible graphs and then apply the Gibbs sampler. This perspective makes

it possible to reduce the search space in the process of the MCMC simulation.
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