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Abstract:

The multilinear normal distribution is a widely used tool in the tensor analysis

of magnetic resonance imaging (MRI). Diffusion tensor MRI provides a statistical

estimate of a symmetric 2nd-order diffusion tensor for each voxel within an imaging

volume. In this article, tensor elliptical (TE) distribution is introduced as an ex-

tension to the multilinear normal (MLN) distribution. Some properties, including

the characteristic function and distribution of affine transformations, are given.

An integral representation connecting densities of TE and MLN distributions is

exhibited that is used in deriving the expectation of any measurable function of a

TE variate.
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Figure 1: Visualization of tensor filed of a brain

1. Introduction

Nowadays, the analysis of matrix-valued data sets is become quite common in

medical sciences, since the collected data are of multiple-way (multiple-component)

arrays. For example, in medical imaging, it has become possible to collect magnetic

resonance imaging (MRI) data that can be used to infer the apparent diffusivity of

water in tissue in vivo. In this regard, there is a need to consider parallel extensions

of bilinear forms∗, namely tensor matrices. Tensor matrices have been commonly

used to approximate the diffusivity profile of images. This approximation yields a

diffusion tensor magnetic resonance imaging (DT-MRI) data set. The processing

of DT-MRI data sets has scientific significance in clinical sciences. Figure 1 shows

the tensor field in a diffusion MRI image.

In image analysis, the characteristic or precision matrix of the underlying model

for tensor observations and distribution of eigenvalues play deterministic roles.

Hence, the underlying tensor distribution influences the respective inference. The

use of tensor and associated distributional structure in Statistics dates back to

McCullagh (1987). McCullagh (1984) had already introduced tensor notation in

statistics regarding the computation of polynomial cumulants. For selective papers

about tensors and their applications in statistics, we refer to Sakata (2016).

In all pronounced studies in statistical tensor analysis, tensor normal (or multi-

linear normal) distribution is employed for the underlying distribution of observa-

tions. However, a slight change in the specification of the distribution, as pointed

by Basser and Pajevic (2003), may play havoc on the resulting inferences. Hence,

∗Bilinear form is a two-way (two-component) array, with each component represents a vector

of observations
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the contribution of this study can be highlighted as follows:

• Proposing a new class of symmetric tensor distributions;

• deriving important statistical characteristics of the new class for inferential

purposes;

• obtaining the maximum likelihood estimates for the location and scale pa-

rameters in the tensor field.

Therefore, this paper’s plan is as follows: In section 2, we give some prelimi-

nary mathematical results for the tensor’s definition. Section 3 contributes to the

central part of this study and defines a new class of tensor distributions as an

extension to matrix variate elliptical distribution in Statistics, along with some

properties. In section 4, an underlying integral representation is given for the

ease of computation, while section 5 includes some examples of the new proposed

class of tensor distributions. Section 6 includes the estimation of parameters for

inferential purposes. We conclude the results in section 7.

2. Preliminaries

In this section, we introduce related notation to our study and give some defini-

tions. We adhere to the notations of Ohlson et al. (2013).

Let X be a tensor of order k (kth-order tensor, in tensor parlance), with the

dimension p = (p1, p2, . . . , pk) in the x = (x1, x2, . . . , xk) direction. Figure 2 shows

the special case when k = 3. Indeed 2nd-order tensor is a matrix, 1st-order tensor

is a vector, and 0th-order tensor is a scalar.

In connection with Figure 2, Figure 3 shows that the collected data can be

interpreted as a tensor, where the assessment of cardiac ventricular with helical

structure is done by DT-MRI.

Vectorial representation of a tensor, makes the related inference much simpler.

Let vecX denote the vectorization of tensor X = (xi1i2···ik), according to the

definition of Kolda and Bader (2009) given by

vecX =

p1∑
i1=1

· · ·
pk∑
ik=1

xi1i2···ike
1
i1 ⊗ · · · ⊗ e

k
ik
,

=
∑
Ip

xi1i2···ike
p
1:k, (2.1)

where ekik , ek−1
ik−1

, ..., e1
i1

are the unit basis vectors of size pk, pk−1, ..., p1, respec-

tively, ep1:k = e1
i1
⊗ · · · ⊗ ekik , where ⊗ denotes the Kronecker product, Ip is the
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Figure 2: Visualization of a 3-dimensional data set as a 3rd-order tensor.

Figure 3: Helical structure of the cardiac ventricular anatomy
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index set defined as Ip = {i1, . . . , ik : 1 ≤ ij ≤ pj , 1 ≤ j ≤ k}. In Ohlson et

al. (2012), the authors concentrated on the estimation of a Kronecker structured

covariance matrix of order three (k = 3), the so called double separable covariance

matrix, generalizing the work of Srivastava et al. (2008), for multilinear normal

(MLN) distributions.

Let T p denote the space of all vectors x = vecX , where X is a tensor of order

k, i.e., T p = {x : x =
∑
Ip
xi1i2···ike

p
1:k}. Note that this tensor space is described

using vectors. However, we can define tensor spaces using matrices. This is given

in the following definition.

Definition 2.1. Let

(i) T pq =
{
X : X =

∑
Ip∪Iq xi1,··· ,ik,j1,··· ,jle

p
1:k(dq1:l)

′
}

,

Iq = {j1, . . . , jl : 1 ≤ ji ≤ pi, 1 ≤ i ≤ l}

(ii) T pq
⊗ = {X ∈ T pq : X = X1 ⊗ . . .⊗Xk,Xi : pi × qi}

(iii) T p
⊗ =

{
X ∈ T pp

⊗ : X = X1 ⊗ . . .⊗Xk,Xi : pi × pi
}

Theorem 2.2. (Ohlson et al. (2013)) A tensor X is MLN of order k, denoted by

X ∼ Np(µ,Σ) if x = µ+ Σ
1
2u, where x,µ ∈ T p, Σ ∈ T p

⊗, p = (p1, . . . , pk), and

the elements of u ∈ T p are independent standard normally distributed.

Note that Σ ∈ T p
⊗ can be written as Kronecker product Σ = Σ1 ⊗ . . .⊗Σk

Indeed, Theorem 2.2 configures the MLN distribution using the stochastic rep-

resentation of the vector x ∈ T p. This methodology can be mimicked to extend

the above result for elliptical models. Before revealing the main result of this

paper, we need to consider the definition of matrix elliptical distributions.

3. Tensor Elliptical Distributions

Let u(p∗), p∗ =
∏k
i=1 pi, denote a random vector distributed uniformly on the unit

sphere surface in Rp∗ , with characteristic function (cf) Ωp∗(·). Hereafter, using

Theorem 2.2 of Fang et al. (1990), we propose a definition for tensor elliptical

(TE) distribution. The methodology behind our definition of TE distribution

comes from two facts: (1) a random matrix X has matrix elliptical distribution if

and only if vecX has a vector-variate elliptical distribution, which will be used for

tensor (see Gupta et al. (2013)) (2) the difference between vector-variate elliptical

and TE lies in the structure of the parameter space generated by µ and Σ.
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Definition 3.1. A random tensor X is TE of order k, denoted by X ∼ Ep(µ,Σ, ψ),

if

x = vec(X ) = µ+RΣ
1
2u(p∗), (3.2)

where x,µ ∈ T p, Σ
1
2 ∈ T p

⊗ is any square root, p = (p1, . . . , pk), R ≥ 0 is

independent of u(p∗), and R ∼ F , for some cumulative distribution function (cdf)

F (·) over [0,∞), is related to ψ by the following relation

ψ(x) =

∫
R+

Ωp∗(xr
2)dF (r). (3.3)

The question arises whether the parameters in Definition 3.1 are uniquely de-

fined. The answer is no. To see this, assume that ai, i = 1, . . . , k are positive

constants such that a∗ =
∏k
j=1 aj , Σ∗j = ajΣj , j = 1, . . . , k and ψ∗(x) = ψ

(
1
p∗x
)

.

Then Ep(µ,Σ, ψ) and Ep(µ,Σ∗, ψ∗), where Σ∗ = Σ∗1 ⊗ . . .⊗Σ∗k, define the same

tensor elliptical distribution.

Using the vector representation for x, we can conveniently write the probability

distribution function (pdf) of a TE distribution. The following result gives the pdf

of a random tensor elliptical if it possesses a density, as an extension to Ohlson et

al. (2013).

Theorem 3.2. Under the assumptions of Definition 3.1, the pdf of the TE distri-

bution is given by

fX (x) = |Σ|− 1
2 g
[
(x− µ)′Σ−1(x− µ)

]
,

where g(·) is a non-negative function (density generator, say) satisfying∫
R+

y
1
2p
∗−1g(y)dy <∞.

We designate X ∼ Ep(µ,Σ, g).

Similarly, we have the following result.

Theorem 3.3. Let X ∼ Ep(µ,Σ, ψ). Then, its characteristic function has the

form

φX (S) = eiS
′µψ(S ′ΣS), S ∈ T p. (3.4)

Remark 3.4. Since

|Σ|− 1
2 = |Σ1 ⊗Σ2 ⊗ . . .⊗Σk|−

1
2

=

(
|Σ1|

p∗
p1

)− 1
2

×
(
|Σ2|

p∗
p2

)− 1
2

× . . .×
(
|Σk|

p∗
pk

)− 1
2
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=

k∏
i=1

|Σi|−
p∗
2pi

taking g(y) = (2π)−
1
2p
∗

exp
(
− 1

2y
)

in Definition 3.1, gives the pdf of MLN distri-

bution (as given in Theorem 1 of Ohlson et al. (2013)) as

fX (x) = (2π)−
1
2p
∗

(
k∏
i=1

|Σi|−
p∗
2pi

)
exp

[
−1

2
(x− µ)′Σ−1(x− µ)

]
, (3.5)

where Σ is positive definite, x,µ ∈ T p, Σ ∈ T p
⊗, and p∗ =

∏k
i=1 pi.

The following result gives the distribution of affine transformations for TE

variates.

Theorem 3.5. Let X ∼ Ep(µ,Σ, ψ), with vecX ∈ T p, A ∈ T qp is nonsingular,

and B ∈ T q. Then, AX +B ∼ Eq(Aµ +B,AΣA′), where Aµ +B ∈ T q and

AΣA′ ∈ T q
⊗.

Proof. Let y = Ax+B, where x = vec(X ). From the stochastic representation in

Definition 3.1, the proof directly follows from y = (Aµ+B) +R(AΣ
1
2 )u(p∗).

The following result is a direct consequence of Theorem 2.16 of Gupta et al.

(2013) for tensor elliptical distributions.

Theorem 3.6. Under the assumptions of Definition 3.1, the pdf of R has from

hR(r) =
2π

1
2p
∗

Γ
(

1
2p
∗
)rp∗−1g

(
r2
)
, r ≥ 0.

The following theorem reveals the distribution of quadratic form for a special

case.

Theorem 3.7. Let X ∼ Ep(0,Σ(1), ψ), where Σ(1) = Σ ⊗ Ip2 ⊗ . . . ⊗ Ipk ∈
T p
⊗, p = (p1, . . . , pk). Then, the pdf of A = XX ′ is given by

f(A) =
πp
∗ |Σ|− 1

2p1

Γp1
(

1
2p

(1)
) |A| 12p(1)−p1−1g(tr Σ−1A)

where p(1) =
∏k
j=2 pj.

In the forthcoming section, we provide a weighting representation of the pdf of

TE variate using the Laplace operator.
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4. Weighting Representation

Although the proposed theorems in the previous section are obtained convention-

ally, it is not easy to achieve other statistical properties of the TE distributions

from Definition 3.1 straightforwardly. However, under mild conditions, one can

make a connection between densities of TE and MLN pdfs and derive other prop-

erties of the TE distributions using MLN distributions. In this section, we propose

a weighting representation that connects densities of the TE and MLN distribu-

tions. This result is given in the following theorem.

Theorem 4.1. Let X ∼ Ep(µ,Σ, g), where µ ∈ T p, Σ ∈ T p
⊗ and g : R+ → R+.

Also assume that g(s2) is differentiable when s2 is sufficiently large, and g(s2)

vanishes faster than s−k; k > 1 as s→∞. Then, the pdf of X can be represented

as an integral of a series of MLN pdfs given by

fX (x) =

∫
R+

W(t)fNp(µ,t−1Σ)(x)dt,

where fNp(µ,t−1Σ)(·) is the pdf of Np(µ, t−1Σ) and W(·) is a weighting function.

Proof. Let s2 = 1
2 (x− µ)′Σ−1(x− µ) and

W(t) = (2π)
1
2p
∗
t−

p∗
2 L−1

[
g
(
2s2
)]
,

where L is the Laplace transform operator. It should be noted that under the

regularity condition on g(s2), the inverse Laplace transform exists. Then, from

|Σ|− 1
2 =

∏k
i=1 |Σi|−

p∗
2pi , we have

f(x) = |Σ|− 1
2 g(2s2) = |Σ|− 1

2L
[
W(t)(2π)−

1
2p
∗
t
p∗
2

]
= L

[
W(t)(2π)−

1
2p
∗
t
p∗
2

k∏
i=1

|Σi|−
p∗
2pi

]

=

∫
R+

W(t)(2π)−
1
2p
∗
t
p∗
2

(
k∏
i=1

|Σi|−
p∗
2pi

)
e−ts

2

dt

=

∫
R+

W(t)(2π)−
1
2p
∗

(
k∏
i=1

|t− 1
kΣi|−

p∗
2pi

)
e−

1
2 (x−µ)′(t−1Σ)−1(x−µ)dt

=

∫
R+

W(t)fNp(µ,t−1Σ)(x)dt.

The proof is complete.

Thus, a TE variable is an integral over all MLN variables having the same

covariance subject to different scales.
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Since fX (·) is the pdf of X , using Fubini’s theorem, we obtain

1 =

∫
χ

fX (x)dx =

∫
χ

∫
R+

W(t)fNp(µ,t−1Σ)(x)dtdx

=

∫
R+

W(t)

∫
χ

fNp(µ,t−1Σ)(x)dxdt

=

∫
R+

W(t)dt (4.6)

where χ is the sample space, hence, for positive weighting functions W(·), the

weighting representation of TE distributions can be interpreted as a scale mixture

of MLN distributions. However, sometimes,W(·) can be negative. Note that a TE

distribution is completely defined by the matrix Σ ∈ T p
⊗ and the scalar weighting

function W(·).
Theorem 4.1 enables us to describe more properties of TE distributions via

MLN distributions. This can be done using the following important result.

Theorem 4.2. Let x ∼ Ep(µ,Σ, g), µ ∈ T p, Σ ∈ T p
⊗ and g : R+ → R+ with

weighting function W(·), and B(x) be any Borel measurable function of x ∈ T p.

Then, if E[B(x)] exists, we have

E[B(x)] =

∫
R+

W(t)ENp(µ,t−1Σ)[B(x)]dt

5. Examples

In this section, we provide some examples of TE distributions based on Definition

3.1 with respective weighting function, as defined in Theorem 4.1.

Firstly, we consider some examples in which the weighting function W(.) is

always positive, resulting to scale mixture of multilinear normal distributions.

(i) Multilinear normal distribution (Ohlson et al. (2013))

The weighting function has the form

W(t) = δ(t− 1),

where δ(·) is the Dirac delta or impulse function having the property
∫
R
f(x)δ(x)dx =

f(0), for every Borel-measurable function f(·).

(ii) Multilinear ε-contaminated normal distribution

We say the random tensor X ∈ T p has multilinear ε-contaminated normal
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distribution if it has the following density

fX (x) =
1

(2π)
1
2p
∗

(
k∏
i=1

|Σi|−
p∗
2pi

){
(1− ε) exp

[
−1

2
(x− µ)′Σ−1(x− µ)

]
+

ε

σp∗
exp

[
− 1

2σ2
(x− µ)′Σ−1(x− µ)

]}
.

Then it can be concluded that the weighting function is given by

W(t) = (1− ε)δ(t− 1) + εδ(t− σ2).

(iii) Tensor t-distribution

We say the random matrix X ∈ T p has tensor t-distribution if it has the

following density

fX (x) =
ν
p∗
2 Γ
(
p∗+ν

2

)
π

1
2p
∗
Γ(ν2 )

{
1 +

1

ν
(x− µ)′Σ−1(x− µ)

}−(p∗+ν)

. (5.7)

The corresponding weighting function has the form W(t) =
( tν2 )

ν
2 e−

tν
2

tΓ( ν2 )
.

The tensor Cauchy distribution is obtained by setting ν = 1 in (5.7).

It is of much interest to consider cases in which the weighting function W(.)

is not always positive. Such kinds of distributions are not scale mixture of

multilinear normal distributions. The item below is not a tensor distribution,

however, it is 0th-order tensor distribution.

(iv) The one-dimensional distribution with the following density

f(x) =

√
2

πσ

[
1 +

(x
σ

)4
]−1

,

where the weighting function is given by W(t) = 1√
tπ

sin
(
t
2

)
.

6. Inference

Theorem 6.1. Suppose that tensor variables X 1, . . . ,Xn are jointly distributed

with the following pdf

k∏
i=1

|Σi|−
p∗
2pi g

 n∑
j=1

x′jΣ
−1xj

 , Σ = Σ1 ⊗Σ2 ⊗ . . .⊗Σk
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such that σ
(2)
p2p2 = σ

(3)
p3p3 = . . . = σ

(k)
pkpk = 1, where Σr =

(
σ

(r)
ij

)
. Further, suppose

g(·) is such that g(x′x) is a pdf in Rp∗ and yp
∗/2g(y) has a finite positive maxi-

mum yg. Suppose that Σ̃ is an estimator which obtains from solving the following

equations

Σ̃1 =
1

p∗2:kn

n∑
j=1

x′jΣ
−1
2:kxj

and, for r = 2, . . . , k

Σ̃r =
1

p∗1:r−1p
∗
r+1:kn

n∑
j=1

x
2,r(r)
i

′ (
Σ2,r

1:k\r

)−1

x
2,r(r)
i ,

where

x
2,r(r)
j =

∑
lp

xi1,...ike
2,r
i1:ik\ire

pr
ir

′

Σ2,r
1:k\r = Σ2 ⊗ . . .⊗Σr−1 ⊗Σ1 ⊗ . . .⊗Σk

e2,r
i1:ik\ir = ep1i1 ⊗ e

p3
i3
⊗ . . .⊗ epr−1

ir−1
⊗ epr+1

ir+1
⊗ . . .⊗ epkik

Then, the MLE of Σ is given by

Σ̂ =
p∗

yg
Σ̃

Proof. Let A = |Σ|−
1
p∗Σ. Also for any j = 1, . . . , n write

dj = x′jΣ
−1xj = |Σ|−

1
p∗ x′jA

−1xj . (6.8)

Since |Σ|− 1
2 =

∏k
i=1 |Σi|−

p∗
2pi , the likelihood can be written as

L = |Σ|− 1
2 g

 n∑
j=1

dj


=

(
|Σ|

1
p∗
)− p∗2  n∑

j=1

dj


p∗
2

g

 n∑
j=1

dj


=

 n∑
j=1

x′jA
−1xj

−
p∗
2

d
p∗
2 g(d), (6.9)

where d =
∑n
j=1 dj .

The maximum of (6.9) is attained at Â = Ã and d̂ = yg. Then the MLE of Σ

is given by

Σ̂ = |Σ̂|
1
p∗ Â =

|Σ̂|
1
p∗

|Σ̃|
1
p∗

Σ̃. (6.10)



40 M.Arashi

On the other hand, from (6.8) we get

|Σ̂|
1
p∗ =

∑n
j=1 x

′
jÂ
−1
xj∑n

j=1 d̂j
=

∑n
j=1 x

′
jÃ
−1
xj

d̂
=

∑n
j=1 x

′
jÃ
−1
xj

yg

|Σ̃|
1
p∗ =

∑n
j=1 x

′
jÃ
−1
xj∑n

j=1 d̃j
=

∑n
j=1 x

′
jÃ
−1
xj

d̃
=

∑n
j=1 x

′
jÃ
−1
xj

p∗
(6.11)

Substituting (6.11) in (6.10) and using Theorem 4.1 of Ohlson et al. (2013) gives

the result.

7. Conclusion

In this article, for robust inferring on diffusion tensor magnetic resonance imaging

(DT-MRI) observations, we proposed a class of tensor elliptical (TE) distributions.

This class includes many heavier tail distributions than the tensor normal or mul-

tilinear normal (MLN) distribution. Important statistical properties, including

the characteristic function along with the distribution of affine transformations

derived. The weighting representation is also exhibited that connects densities of

TE and MLN distributions. The result of this paper can be well-used in tensor

regression; see Carlos (2018) for details.
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