Bayesian Computation Statistics
Ehsan Ormoz; Farzad Eskandari
Abstract
This paper introduces a novel semiparametric Bayesian approach for bivariate meta-regression. The method extends traditional binomial models to trinomial distributions, accounting for positive, neutral, and negative treatment effects. Using a conditional Dirichlet process, we develop a model to compare ...
Read More
This paper introduces a novel semiparametric Bayesian approach for bivariate meta-regression. The method extends traditional binomial models to trinomial distributions, accounting for positive, neutral, and negative treatment effects. Using a conditional Dirichlet process, we develop a model to compare treatment and control groups across multiple clinical centers. This approach addresses the challenges posed by confounding factors in such studies. The primary objective is to assess treatment efficacy by modeling response outcomes as trinomial distributions. We employ Gibbs sampling and the Metropolis-Hastings algorithm for posterior computation. These methods generate estimates of treatment effects while incorporating auxiliary variables that may influence outcomes. Simulations across various scenarios demonstrate the model’s effectiveness. We also establish credible intervals to evaluate hypotheses related to treatment effects. Furthermore, we apply the methodology to real-world data on economic activity in Iran from 2009 to 2021. This application highlights the practical utility of our approach in meta-analytic contexts. Our research contributes to the growing body of literature on Bayesian methods in meta-analysis. It provides valuable insights for improving clinical study evaluations.
Ehsan Ormoz
Abstract
In this paper, we will introduce a Bayesian semiparametric model concerned with both constant and coefficients. In Meta-Analysis or Meta-Regression, we usually use a parametric family. However, lately the increasing tendency to use Bayesian nonparametric and semiparametric models, entered this area too. ...
Read More
In this paper, we will introduce a Bayesian semiparametric model concerned with both constant and coefficients. In Meta-Analysis or Meta-Regression, we usually use a parametric family. However, lately the increasing tendency to use Bayesian nonparametric and semiparametric models, entered this area too. On the other hand, although we have some works on Bayesian nonparametric or semiparametric models, they just focus on intercept and do not pay much attention to regressor coefficient(s). We also would check the efficiency of the proposed model via simulation and give an illustrating example.
Bayesian Computation Statistics
Ehsan Ormoz
Abstract
In the meta-analysis of clinical trials, usually the data of each trail summarized by one or more outcome measure estimates which reported along with their standard errors. In the case that summary data are multi-dimensional, usually, the data analysis will be performed in the form of a number of separated ...
Read More
In the meta-analysis of clinical trials, usually the data of each trail summarized by one or more outcome measure estimates which reported along with their standard errors. In the case that summary data are multi-dimensional, usually, the data analysis will be performed in the form of a number of separated univariate analysis. In such a case the correlation between summary statistics would be ignored. In contrast, a multivariate meta-analysis model, use from these correlations synthesizes the outcomes, jointly to estimate the multiple pooled effects simultaneously. In this paper, we present a nonparametric Bayesian bivariate random effect meta-analysis.